[1] Lodewyckx C, Mergeay M, Vangronsveld J, et al . Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens sub sp. Calaminaria . International Journal of Phytoremediation, 2002, 4: 101-115. [2] Cho K M, Young S H, Mi L S, et al . Endophytic bacterial communities in ginseng and their antifungal activity against pathogens. Microbial Ecology, 2007, 54: 341-351. [3] Islam S M A, Math R K, Kim J M, et al . Effect of plant age on endophytic bacterial diversity of balloon flower ( Platycodon grandiflorum ) root and their antimicrobial activities. Current Microbiology, 2010, 61: 346-356. [4] Ramesh R, Joshi A A, Ghanekar M P. Pseudomonads, major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant ( Solanum melongena L.). World Journal of Microbiology and Biotechnology, 2009, 25: 47-55. [5] Forchetti G, Masciarelli O, Izaguirre M, et al . Endophytic bacteria improve seedling growth of sunflower under water stress, produce salicylic acid, and inhibit growth of pathogenic fungi. Current Microbiology, 2010, 61: 485-493. [6] Li C H, Zhao M W, Tang C M, et al . Population dynamics and identification of endophytic bacteria antagonistic toward plant-pathogenic fungi in cotton root. Microbial Ecology, 2010, 59: 344-356. [7] Wang Y, Zhan R L, He H, et al . Antibiotic substances produced by mangrove endophytic bacteria Kc-38 and biocontrol efficacy on anthracnose of postharvest mangoes. Chinese Journal of Biological Control, 2012, 27(1): 82-87. [8] Wang F, Ji M S, Gu Z M, et al . Effect of antifungal substances from endophytic bacteria B36 on Fulria fulva . Chinese Journal of Biological Control, 2009, 25(3): 250-254. [9] Chang T, Wang H Q, Yang C D, et al . Identification and evaluation of biological control potential of B-401 endophytic bacteria in grasses on alpine grasslands. Acta Prataculturae Sinica, 2014, 23(3): 282-289. [10] Hou X J, Li Z N, Han D Y, et al . Presence of indigenous endophytic bacteria in jujube seedlings germinated from seeds in vitro . Frontiers of Agriculture in China, 2010, 4(4): 443-448. [11] Wang C Y, Chen X R, Yang C D, et al . Identification of an endophytic phosphate-solubilizing bacteria isolated from Kobresia capillifolia . Journal of Gansu Agricultural University, 2011, 46(3): 99-103. [12] Oliveira A L M, Urquiaga S, Döbereiner J, et al . The effect of inoculating endophytic N 2 -fixing bacteria on micropropagated sugarcane plants. Plant and Soil, 2002, 242: 205-215. [13] Liu J L, Fang F, Shi X H, et al . Isolation and characterization of PGPR from the rhizosphere of the Avena sativa in saline-alkali soil. Acta Prataculturae Sinica, 2013, 22(2): 132-139. [14] Liu X, Mu C Q, Jiang X L, et al . Research progress of the metabolic substances produced by Bacillus subtillis and their application on biocontrol of plant disease. Chinese Journal of Biological Control, 2006, 10, 22(Supplement): 179-184. [15] Xie J S, Li R, Zhao L, et al . Purification, characterization and antagonism of an extracellular protease from Bacillus subtilis strain T2. Acta Phytopathologica Sinica, 2008, 38(4): 377-381. [16] Gao F, Ma L P, Qiao X W, et al . Purification of antifungal peptide produced by antagonistic Bacillus cereus BC98-I against Fusarium oxysporum . Acta Phytopathologica Sinica, 2007, 37(4): 403-409. [17] Zhai R H, Shang Y K, Liu F, et al . Characteristics and inhibitory action of antifungal protein produced by Bacillus subtilis strain G8. Journal of Plant Protection, 2007, 34(6): 592-596. [18] Sun J B, Wang Y G, Zhao P J, et al . Colonization of biocontrol strain XB16 against Fusarium wilt pathogen of banana and its effect on defense-related enzymes. Chinese Journal of Tropical Crops, 2012, 31(2): 212-216. [19] Yang H L, Sun X L, Song W. Current development on induced resistance by plant growth promoting and endophytic bacteria. Acta Phytopathologica Sinica, 2000, 30(2): 106-110. [20] Chang T, Wang H Q, Yang C D, et al . Screening and identification of antagonist bacteria against Phoma foveata on potato. Chinese Journal of Biological Control, 2014, 30(2): 247-252. [21] Fang Z D. Research Method of Plant Pathology(Third Edition)[M]. Beijing: Chinese Agriculture Press, 1997. [22] Gulpiye, Huang L L, Kang Z S. Study on a strain of high chitinase producing bacteria against plant pathogens. Acta Agriculturae Boreali-occidentalls Sinica, 2006, 15(6): 189-191. [23] Tang Z Y, Wang H, Xiong S B, et al . Studies on the screening of β-1,3-glucanase producing strains and enzyme producing condition. Journal of Hunan Agricultural University (Natural Sciences), 2006, 32(5): 552-556. [24] Gao W. The Biocontrol Mechanism of Bacillus marinus B-9987[D]. Qingdao: Qingdao University of Science and Technology, 2009. [25] Armando C F D, Francisco E C C, Fernando D A, et al . Isolation of micropropagated strawberry endophytic bacteria and assessment of their potential for plant growth promotion. World Journal of Microbiology and Biotechnology, 2009, 25: 189-195. [26] Zhang P, Wang W Q, Huang Q L, et al . Development of 40% fluopicolide·pyraclostrobin suspension concentrate and its controlling efficacy to potato late blight in the field. Scientia Agricultura Sinica, 2013, 46(15): 3142-3150. [27] Qin G Z, Tian S P, Liu H B, et al . Polyphenol oxidase, peroxidase and phenylalanine ammonium lyase in postharvest peach fruits induced by inoculation with pichia membranefaciens or rhizopus stolonifer. Scientia Agricultura Sinica, 2003, 36(1): 89-93. [28] Zhuang J H, Gao Z G, Yang C C, et al . Biocontrol of Fusarium wilt and induction of defense enzyme activities on cucumber by Trichoderma viride strain T23. Acta Phytopathologica Sinica, 2005, 35(2): 179-183. [29] Yan Y H, Wang H K, Xiao R F, et al . Bio-control effects of a lactic acid bacteria on tomato Botrytis blight and its induction on defense-related enzymes. Microbiology, 2011, 38(12): 1801-1806. [30] Tai L M, Liang W L, Zuo Y H, et al .Changes of defensive enzymes activity in different resistant potato varieties after inoculated with Alternaria solani . Plant Physiology Journal, 2010, 46(11): 1147-1150. [7] 汪远, 詹儒林, 何红, 等. 红树内生细菌菌株Kc-38的抗菌物质及对采后芒果炭疽病的防效. 中国生物防治学报, 2012, 27(1): 82-87. [8] 王芳, 纪明山, 谷祖敏, 等. 苦参内生枯草芽孢杆菌B36抗菌物质对番茄叶霉病菌的作用机制. 中国生物防治, 2009, 25(3): 250-254. [9] 畅涛, 王涵琦, 杨成德, 等. 高寒草地禾草内生细菌B-401的鉴定及生物防治潜力评价. 草业学报, 2014, 23(3): 282-289. [11] 王辰月, 陈秀蓉, 杨成德, 等. 线叶嵩草内生细菌的鉴定及溶磷效果的初步研究. 甘肃农业大学学报, 2011, 46(3): 99-103. [13] 刘佳莉, 方芳, 史煦涵, 等. 2株盐碱地燕麦根际促生菌的筛选及其促生作用研究. 草业学报, 2013, 22(2): 132-139. [14] 刘雪, 穆常青, 蒋细良,等. 枯草芽孢杆菌代谢物质的研究进展及其在植病生防中的应用. 中国生物防治, 2006, 10, 22(增刊): 179-184. [15] 邢介帅, 李然, 赵蕾, 等. 生防芽孢杆菌T2胞外蛋白酶的纯化及其抗真菌作用. 植物病理学报, 2008, 38(4): 377-381. [16] 高芬, 马利平, 乔雄梧, 等. 枯萎菌拮抗芽孢杆菌BC98-I抗菌多肽的纯化. 植物病理学报, 2007, 37(4): 403-409. [17] 翟茹环, 尚玉珂, 刘峰, 等. 枯草芽孢杆菌G8抗菌蛋白的理化性质和抑菌作用. 植物保护学报, 2007, 34(6): 592-596. [18] 孙建波, 王宇光, 赵平娟, 等. 拮抗菌XB16在香蕉体内的定殖及对抗病相关酶活性的影响. 热带作物学报, 2012, 31(2): 212-216. [19] 杨海莲, 孙晓璐, 宋未. 植物根际促生细菌和内生细菌的诱导抗病性的研究进展. 植物病理学报, 2000, 30(2): 106-110. [20] 畅涛, 王涵琦, 杨成德, 等. 马铃薯坏疽病 Phoma foveata 生防菌的筛选及鉴定. 中国生物防治学报, 2014, 30(2): 247-252. [21] 方中达. 植病研究方法(第三版)[M]. 北京: 中国农业出版社, 1997. [22] 古丽皮艳, 黄丽丽, 康振生. 一株高产几丁质酶细菌对植物病原真菌的抑制作用研究. 西北农学报, 2006, 15(6): 189-191. [23] 唐治玉, 王淮, 熊善柏, 等. β-1,3-葡聚糖酶产生菌的筛选及其产酶条件. 湖南农业大学学报(自然科学版), 2006, 32(5): 552-556. [24] 高伟. 海洋芽孢杆菌 B-9987 生物防治机制研究[D]. 青岛, 青岛科技大学, 2009. [26] 张鹏, 王文桥, 黄啟良, 等. 40%氟菌·唑醚悬浮剂的研制及其对马铃薯晚疫病田间防治效果. 中国农业科学, 2013, 46(15): 3142-3150. [27] 秦国政, 田世平, 刘海波, 等. 拮抗菌与病原菌处理对采后桃果实多酚氧化酶、过氧化物酶及苯丙氨酸解氨酶的诱导. 中国农业科学, 2003, 36(1): 89-93. [28] 庄敬华, 高增贵, 杨长城, 等. 绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性的影响. 植物病理学报, 2005, 35(2): 179-183. [29] 闫艳华, 王海宽, 肖瑞峰, 等. 一株乳酸菌对番茄灰霉病的防效及对几种防御酶活性的影响. 微生物学通报, 2011, 38(12): 1801-1806. [30] 台莲梅, 梁伟伶, 左豫虎, 等. 马铃薯不同品种感染早疫病菌后防御酶活性变化. 植物生理学通讯, 2010, 46(11): 1147-1150. |