[1] Shipley B, Vile D, Gamier É. From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science, 2006, 314(5800): 812-814. [2] Sargent R D, Ackerly D D. Plant-pollinator interactions and the assembly of plant communities. Trends in Ecology & Evolution, 2008, 25(3): 123-130. [3] Gough L, Osenberg C W, Gross K L, et al . Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos, 2000, 89(3): 428-439. [4] Fensham R J, Holmar J E, Cox M J. Plant species responses along a grazing disturbance gradient in Australian grassland. Journal of Vegetation Science, 1999, 10(1): 77-86. [5] Fridley J D. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities. Oecologia, 2002, 132(2): 271-277. [6] Rajaniemi T K. Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. Journal of Ecology, 2002, 90(2): 316-324. [7] Fang X Q, Yu W H. Progress in the studies on the phenological responding to global warming. Advance in Earth Sciences, 2002, 17(5): 714-719. [8] Roche R, Jeuffroy M H, Ney B. Comparison of different models predicting the date of beginning of flowering in pea ( Pisum sativum L.). Ecological Modelling, 1999, 118: 213-226. [9] Chen H L, Wu C L. Judgement of period of flower bud differentiation of Litchi by Fisher discriminant analysis. Chinese Journal of Agrometeorology, 2007, 28(4): 417-419. [10] Wu R J, Zheng Y F, Zhao G Q, et al . Spring phenophase changes of dominant plants in Zhengzhou and their responses to air temperature change. Chinese Journal of Ecology, 2009, 28(6): 1049-1054. [11] Zheng J Y, Ge Q S, Zhao H X. Changes of plant phenological period and its response to climate change for the last 40 years in China. Chinese Journal of Agrometeorology, 2003, 24(1): 28-32. [12] Menzel A. Phenology: Its importance to the global change community. Climatic Change, 2002, 54(4): 379-385. [13] Fitter A H, Fitter R S R. Rapid changes in flowering time in British plants. Science, 2002, 296(5573): 1689-1691. [14] Cleland E E, Chuine I, Menzel A, et al . Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 2007, 22(7): 357-365. [15] Cleland E E, Chiariello N R, Laorie S R, et al . Diverse responses of phenology to global changes in a grassland ecosystem. PNAS, 2006, 103(37): 13740-13744. [16] Li Y H. Responses of Reproductive Phenology of Inner Mongolia Typical Steppe Plants under Climatic Change and Artificial Interference[D]. Lanzhou: Gansu Agriculture University, 2008. [17] Li Y N. Chinese academy of alpine meadow ecosystem research station climate overview. Dynamic Resource Network of Ecological Environment, 1998, 9(3): 30-33. [18] Zhou X M. Chinese Song Grass Meadow[M]. Beijing: Science Press, 2001: 10-21. [19] Xu S X, Zhao X Q, Sun P, et al . A simulative study on effects of climate warming on nutrient contents and in vitro digestibility of herbage grown in Qinghai-Xizang plateau. Acta Botanica Sinica, 2002, 44(11): 1357-1364. [20] Yue Y Z, Zuo K C, Zhang J X, et al . Distance from the North Sea to the Alpine Meadow Ecosystem Station, Soil Type and its Basic Characteristics[M]. Lanzhou: Gansu People’s Publishing House, 1982: 19-33. [21] Seam M, Schaeffer R D. Pulse additions of soil carbon and nitrogen affect soil nitrogen dynamics in an arid Colorado Plateau shrub land. Ecosystem Ecology, 2005, 145(3): 425-433. [22] Yang X X, Ren F, Zhou H K, et al . Responses of plant community biomass to nitrogen and phosphorus additions in an alpine meadow on the Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology, 2014, 38(2): 159-166. [23] Clark C M, Cleland E E, Fridley J D, et al . Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters, 2007, 10(7): 596-607. [24] Bayaerta. The Study on the Flowering Phenology of Alpine Meadow Communities in the East Qinghai-Tibet Plateau[D]. Lanzhou: Lanzhou University, 2010. [25] Gao S F, Chen W L, Zhu C Q, et al . Applied Climatology[M]. Beijing: China Meteorological Press, 2004: 41-42. [26] Cesaraccio C, Spano D, Duce P, et al . An improved model for determining degree-day values from daily temperature data. International Journal of Biometeorology, 2001, 45(4): 178-183. [27] Ye X. Phenological Characteristics of Plants of Alpine Meadow and Responses to the Fertilization[D]. Beijing: University of Chinese Academy of Sciences, 2011. [28] Zhang Z L. Effects of Nitrogen Addition on Flowering Phenology and Community Structure of Alpine Meadow in the Eastern Qinghai-Tibet Plateau[D]. Lanzhou: Lanzhou University, 2013. [29] Silvertown J. Plant coexistence and the niche. Trends in Ecology & Evolution, 2004, 19(11): 605-611. [30] Cao C C, Qi Y C, Dong Y S, et al . Effects of nitrogen deposition on critical fractions of soil organic carbon in terrestrial ecosystems. Acta Prataculturae Sinica, 2014, 23(2): 323-332. [31] Bowman W D, Gartner J R, Holland K, et al . Nitrogen critical loads for alpine vegetation and terrestrial ecosystem response: are we there yet. Ecological Applications, 2006, 16(3): 1183-1193. [32] Chen Y X, Chen X, Chen X P, et al . Effects of different nitrogen additions on the yield, quality and nutrient absorption of forage maize. Acta Prataculturae Sinica, 2014, 23(3): 255-261. [33] Deng S H, Lin M Y, Li F S, et al . Effects of fertilization on soil carbon pool management index and enzyme activities in pasture grown soil of the Karst region. Acta Prataculturae Sinica, 2014, 23(4): 262-268. [7] 方修琦, 余卫红. 物候对全球变暖响应的研究综述. 地球科学进展, 2002, 17(5): 714-719. [9] 陈汇林, 吴翠玲. 利用费歇尔准则判别荔枝花芽分化期. 中国农业气象, 2007, 28(4): 417-419. [10] 吴荣军, 郑有飞, 赵国强, 等. 郑州主要植物春季物候变化及其对气温变化的响应. 生态学杂志, 2009, 28(6): 1049-1054. [11] 郑景云, 葛全胜, 赵会霞. 近 40 年中国植物物候对气候变化的响应研究. 中国农业气象, 2003, 24(1): 28-32. [16] 李元恒. 内蒙古典型草原生殖物候对气候变化和人为干扰的响应[D]. 兰州: 甘肃农业大学, 2008. [17] 李英年. 中国科学院海北高寒草甸生态系统定位站气候概述. 资源生态环境网络研究动态, 1998, 9(3): 30-33. [18] 周兴民. 中国嵩草草甸[M]. 北京:科学出版社, 2001: 10-21. [19] 徐世晓, 赵新全, 孙平, 等. 气候变暖对青藏高原牧草营养含量及其体外消化率影响模拟研究. 植物学报, 2002, 44(11): 1357-1364. [20] 乐炎舟, 左克成, 张金霞, 等. 海北高寒草甸生态系统定位站的土壤类型及其基本特点[M]. 兰州: 甘肃人民出版社, 1982: 19-33. [22] 杨晓霞, 任飞, 周华坤, 等. 青藏高原高寒草甸植物群落生物量对氮、磷添加的响应. 植物生态学报, 2014, 38(2): 159-166. [24] 巴雅尔塔. 青藏高原东缘高寒草甸群落花期物候研究[D]. 兰州: 兰州大学, 2010. [25] 高绍凤, 陈万隆, 朱超群, 等. 应用气候学[M]. 北京: 气象出版社, 2004: 41-42. [27] 叶鑫. 高寒草甸植物物候特征及其对施肥的初期响应[D]. 北京: 中国科学院大学, 2011. [28] 章志龙. 氮素添加对青藏高原东缘高寒草甸植物群落花期物候和群落结构的影响[D]. 兰州: 兰州大学, 2013. [30] 曹丛丛,齐玉春,董云社,等. 氮沉降对陆地生态系统关键有机碳组分的影响.草业学报,2014,23(2): 323-332. [32] 陈远学, 陈曦, 陈新平, 等. 不同施氮对饲草玉米产量品质及养分吸收的影响. 草业学报, 2014, 23(3): 255-261. [33] 邓少虹, 林明月, 李伏生, 等. 施肥对喀斯特地区植草土壤碳库管理指数及酶活性的影响. 草业学报, 2014, 23(4): 262-268. |