Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2015, Vol. 24 ›› Issue (8): 93-102.DOI: 10.11686/cyxb2015001

• Orginal Article • Previous Articles     Next Articles

Effects of brassinosteroid application on osmotic adjustment and antioxidant enzymes in Leymus chinensis under drought stress

SONG Ji-Xuan1, 2, LI Jin-Huan1, LIU Mei-Ru1, NIU Jian-Hang1, WANG Ran1, LV Jun1, ZONG Xue-Feng1, WANG San-Gen1, *   

  1. 1.College of Agronomy and Biotechnology, Southwest University, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400715, China;
    2.Guizhou Institute of Biotechnology, Guiyang 510006, China
  • Online:2015-08-20 Published:2015-08-20

Abstract: Droughts have become increasingly severe in pastoral areas of China and have greatly constrained the productivity of grassland. The influence of brassinosteroids(BR) on the growth and drought tolerance of Leymus chinensis has been studied under controlled soil and water conditions using a pot experiment design. The results showed that drought stress substantially disrupted plant growth and development but that BR could effectively alleviate this damage. The most effective concentration of BR was 0.1 mg/L. Plant height, leaf area, dry weight, water content, chlorophyll a, chlorophyll b, carotenoids, root activity, proline, soluble protein, soluble sugar and 5 kinds of enzyme activity increased with all BR concentrations except for the highest concentration level. BR decreased malondialdehyde (MDA) content and leaf electrical conductivity. The optimal concentration of BR increased the content of photosynthetic pigment and promoted the accumulation of dry matter and root activity compared to the drought control. These changes might be closely related to the decrease of membrane lipid peroxidation production, MDA content and membrane permeability. Also significant may be the increase of osmotic adjustment substances such as proline, soluble protein, soluble sugar, and the enhancement of antioxidase activities such as superoxide dismutase, catalase, peroxidase, ascorbate peroxidase and glutathione reductase.