[1] Zhang C P, Li Y C, Yuan F G, et al . Effects of hematin and carbon monoxide on the salinity stress responses of Cassia obtusifolia L. seeds and seedlings. Plant Soil, 2012, 359: 85-105. [2] Sheokand S, Kumari A, Sawhney V. Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiological and Molecular Plant Pathology, 2008, 14(4): 355-362. [3] Fan H F, Du C X, Ding L, et al . Effects of nitric oxide on the germination of cucumber seeds and antioxidant enzymes under salinity stress. Acta Physiologiae Plantarum, 2013, 35:2707-2719. [4] Ren X L, Zhang S Y, Yu J N. Nitric oxide and its role in maturation and senescence in plant. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(1): 167-171. [5] Zhao X D, Yang H Y, Wang Y. Functions of nitric oxide in signal transduction of plant resistance to environmental stress. Journal of Anhui Agricultural Sciences, 2008, 36(22): 9397-9399, 9499. [6] Zheng C, Jiang D, Liu F, et al . Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity.Environmental and Experimental Botany, 2009, 67: 222-227. [7] Guo F Q, Okamoto M, Crawford N M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling. Science, 2009, 302: 100-103. [8] Garcí��-Mata C, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiology, 2001, 126: 1196-1204. [9] Takahashi S, Yamasaki H. Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. Febs Letters, 2002, 512:145-148. [10] Garcia-Mata C, Lamattina L. Abscisic acid (ABA) inhibits light-induced stomatal opening through calcium and nitric oxide-mediated signaling pathways. Nitric Oxide, 2007, 17: 143-151. [11] He Y K, Tang R H, Hao Y, et al . Nitric oxide represses the Arabidopsis floral transition. Science, 2004, 305:1968-1971. [12] Delledonne M, Xia Y, Dixon R A, et al . Nitric oxide functions as a signal in plant disease resistance. Nature, 1998, 394: 585-588. [13] Liu K L, Han H R, Xu Y H, et al . Exogenous nitric oxide alleviates salt stress-induced membrane lipid peroxidation in rice seedling roots. Chinese Journal of Rice Science, 2005, 19(4): 333-337. [14] Li H, Zhao W C, Zhao H J, et al . Effects of exogenous nitric oxide donor sodium nitroprusside on ATPase activity and membrane lipid peroxidation in wheat ( Triticum aestivum L. cv. ‘Luohan 6’) seedling leaves under drought stress. Plant Physiology Communications, 2009, 45(5): 455-458. [15] Wu X X, Zhu Y L, Zhu Y M, et al . Protective effects of exogenous nitric oxide on oxidative damage in tomato seedling leaves under NaCl Stress. Jiangsu Journal of Agricultural Science, 2006, 22(3): 276-280. [16] Liu J L, Yun T Y,Cao J M, et al . Effect of acid treatment on seed germination of Medicago truncatula gaertn. Seed, 2008, 27(9): 87-88. [17] Barker D G, Bianchi S, Blondon F, et al . Medicago truncatula , a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Molecular Biology Reporter, 1990, 8: 40-49. [18] Xue Y F, Shi Z Q, Yan S H, et al . A preliminary study of assessing the feasibility of using physiological and biochemical parameters to assess water hyacinth biogas slurry for soaking seeds to improve germination characteristics. Acta Prataculturae Sinica, 2010, 19(5): 51-56. [19] Gao C F, Wen B Q, Wang Y X, et al . Allelopathy of Chamaecrista spp on Paspalum notatum under aluminum and magnesium stress. Acta Prataculturae Sinica, 2009, 18(5): 40-45. [20] Li B B, Wei X H, Xu Y. The causes of Gentiana straminea Maxim.seeds dormancy and the methods for its breaking. Acta Ecologica Sinica, 2013, 33(15): 4631-4638. [21] Jiang Y B, Zheng Q H, Wang C Z, et al . Effects of ultradrying storage on vigor and antioxidase activity of Cichoriun intybus seeds. Acta Prataculturae Sinica, 2009, 18(5): 93-97. [22] Zou Q. Plant Physiology Experimental Guide[M]. Beijing: China Agriculture Press, 2000. [23] Li H S. Plant Physiological and Biochemical Principle and Technology[M]. Beijing: Higher Education Press, 2000. [24] Yu M, Zhou S B, Wu X Y, et al . Dormancy break approaches and property of dormant seeds of wild Cryptotaenia japonica . Acta Ecologica Sinica, 2012, 32(4): 1347-1354. [25] Wang A G, Luo G H. Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plants. Plant Physiology communication, 1990, 26(2): 55-57. [26] Zhu Z B, Liang Z S, Han R L. Saikosaponin accumulation and antioxidative protection in drought-stressed Bupleurum chinense DC. Plants. Environment and Experimental Botany, 2009, 66:326-333. [27] An Y Y, Liang Z S. Drought tolerance of Periploca sepium during seed germination: antioxidant defense and compatible solutes accumulation. Acta Physiologiae Plantarum, 2013, 8(7): 1-8. [28] Huang X S, Liu J H, Chen X J. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata , enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biology, 2010, 10: 230. [29] Shi S, Fu X Z, Peng T, et al . Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiology, 2010, 30: 914-922. [30] Aebi H. Catalase in vitro. Methods in Enzymology, 1984, 105:121-126. [31] Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascor bate-specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 1981, 22(5): 867-880. [32] Hu N S, Wan X G. Isoenzyme Technique and Application[M]. Changsha: Hunan Science and Technology Press, 1985. [33] Liang H W,Liu S, Chen F J, et al . Development of peroxidase and isoesterase isozymes during seed germination of Tapiscia sinensis Oliv. Seed, 2006, 25(5): 38-40. [34] He Z X, Zhang S Z. Electrophoresis (the second press)[M]. Beijing: Science Press, 1990. [35] Wei Z W, Gai J Y. Model legume: Medicago truncatula . Acta Prataculturae Sinica, 2008, 17(1): 114-120. [36] Zong W J, Liu K, Bu H Y, et al . The mode of seed size variation and the effects of seed size on fifty-one species of composite plants in a alpine meadow. Journal of Lanzhou University (Natural Sciences), 2006, 42: 52-55. [37] Lu J H, Lv X, Wu L, et al . Germination responses of three medicinal licorices to saline environments and their suitable ecological regions. Acta Prataculturae Sinica, 2013, 22(2): 195-202. [38] Lu Y M, Su C Q, Li H F. Effects of different salts stress on seed germination and seedling growth of Trifolium repens . Acta Prataculturae Sinica, 2013, 22(4):123-129. [39] Cai X Y, Chen X D, Li C Z, et al . Effects of exogenous Ca 2+ on the seed germination of Koelreuteria paniculata in limestone area of Southwest China under drought stress. Chinese Journal of Applied Ecology, 2013, 24(5): 1341-1346. [40] Khan M S A, Hamid A, Karim M. Effects of sodium chloride on germination and seedling characters of different types of rice ( Oryza sativa L.).Journal of Agronomy and Crop Science, 1997, 179:163-169. [41] Tang S H, Zhou Q G, Sun M, et al . Effects of exogenous nitric oxide on seed germination, seedling growth and physiological characteristics of cucumber under osmotic pressure. Scientia Agricultural Sinica, 2007, 40(2):419-425. [42] Kopyra E A. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus . Physiology and Biochemistry, 2003, 41: 1011-1017. [43] Chai J R. The amylase and sugars trends of different type tobacco seed at germination time. Seed, 2006, 25(10): 9-12. [44] Tang J, Hou L X, Che Y M, et al . The effects of exogenous salicylic acid and nitric oxide on maize seed germination and the activity of amylase. Anhui Agricultural Science Bulletin, 2007, 13(19): 40-42. [45] Zheng G H, Shi Z L, Zhao T F, et al . Seed Physiology[M]. Beijing: Agriculture Press, 1990: 113, 123, 240. [46] Zhou W H,Shi S L, Kou J T. Effect of nitric oxide on alfalfa seed germination under NaCl stess. Jouenal of Nucera Agricultural Sciences, 2012,26(4): 710-716. [47] Zheng C F, Jiang D, Dai T B, et al . Effects nitroprusside,a nitric oxide donor, on carbon and nitrogen metabolism and the activity of the antioxidation system in wheat seedlings under salt stress. Acta Ecologica Sinica, 2010, 30(5):1174-1183. [48] Fan H F, Guo S R, Jiao Y S, et al . The effects of exogenous nitric oxide on growth, active oxygen metabolism and photosynthetic characteristics in cucumber seedlings under NaCl stress. Acta Ecologica Sinica, 2007, 27(2):546-563. [49] Gao H N, Ma G T, Li C X, et al . Effects of a microorganism on grass physiological and biochemical characteristics when grown in Cr (Ⅵ) polluted soil. Acta Prataculturae Sinica, 2014, 23(4): 189-194. [50] Li J, Wu H M,Chen H P. Exogenous carbon monoxide and nitric oxide alleviate the oxidative damage in rice seed germination under drought stress. Acta Botanica Boreali-Occidentalia Sinica, 2011, 31(4): 731-738. [51] Zhang H S, Zhao G Q, Li M F, et al . Physiological responses of Pennisetum longissimium var. intermedium seedlings to PEG, low temperature and salt stress treatments. Acta Prataculturae Sinica, 2014, 23(2): 180-188. [52] Li X, Wu Y J, Sun L X. Growth and physiological responses of three warm-season turfgrasses to lead stress. Acta Prataculturae Sinica, 2014, 23(4): 171-180. [53] Zhang W W, Zhen F X, Wang X K, et al . Effects of ozone on root activity, soluble protein content and antioxidant system in Oryza sativa roots. Journal of Plant Ecology, 2009, 33(3): 425-432. [54] Lie G W, Ye L H, Xue Y L. Effects of ozone stress on major plant physiological functions. Acta Ecologica Sinica, 2014, 34(2): 294-306. [55] Kim Y H, Lim S, Han S H, et al . Differential expression of 10 sweetpotato peroxidases in response to sulfur dioxide, ozone, and ultraviolet radiation. Plant Physiology and Biochemistry, 2007, 45(12): 908-914. [56] Ma S L. Study on the Dormancy Merchanism of Acanthopanax Senticosus Seeds[D]. Changchun: Jilin Agricultural University, 2006. [57] Liu J X, Wang X, Li B P. Effects of exogenous nitric oxide donor SNP on protecting Peganum multisectum seedlings from oxidative damage under NaCl stress. Agricultural Research in the Arid Areas, 2009, 27(6): 139-143. [58] Sun L R, Hao F S, Lv J Z, et al . Effects of exogenous nitric oxide on growth and physiological characteristics of ryegrass seedlings under salt stress. Acta Ecologica Sinica, 2008, 28(11):5714-5722. [4] 任小林, 张少颖, 于建娜. 一氧化氮与植物成熟衰老的关系. 西北植物学报, 2004, 24(1): 167-171. [5] 赵晓丹, 杨红玉, 王媛.一氧化氮在植物抗逆境信号转导中的作用. 安徽农业科学, 2008, 36(22): 9397-9399, 9499. [13] 刘开力, 韩航如, 徐颖洁, 等. 外源一氧化氮对盐胁迫下水稻根部脂质过氧化的缓解作用. 中国水稻科学, 2005, 19(4): 333-337. [14] 李慧, 赵文才, 赵会杰, 等. 外源一氧化氮供体硝普钠对干旱胁迫下小麦幼苗叶中ATP 酶活性和膜脂过氧化的影响. 植物生理学通讯, 2009, 45(5): 455-458. [15] 吴雪霞, 朱月林, 朱为民, 等. 外源一氧化氮对NaCl胁迫下番茄幼苗叶片氧化损伤的保护效应. 江苏农业学报, 2006, 22(3): 276-280. [16] 刘建利, 云天运, 曹君迈, 等. 酸处理对蒺藜状苜蓿种子萌发的影响. 种子, 2008, 27(9): 87-88. [18] 薛延丰, 石志琦, 严少华, 等. 利用生理生化参数评价水葫芦沼液浸种可行性初步研究. 草业学报, 2010, 19(5): 51-56. [19] 高承芳, 翁伯琦, 王义祥, 等. 铝、镁离子胁迫下决明对百喜草的化感作用. 草业学报, 2009, 18(5): 40-45. [20] 李兵兵, 魏小红, 徐严. 麻花秦艽种子休眠机理及其破除方法. 生态学报, 2013, 33(15): 4631-4638. [21] 姜义宝, 郑秋红, 王成章, 等. 超干贮藏对菊苣种子活力与抗氧化性的影响. 草业学报, 2009, 18(5): 93-97. [22] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000: 62-174. [23] 李合生. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2000: 169-184. [24] 喻梅, 周守标, 吴晓艳, 等. 野生鸭儿芹种子休眠特性及破除方法. 生态学报, 2012, 32(4): 1347-1354. [25] 王爱国,罗广华. 植物的超氧自由基与羟胺反应的定量关系. 植物生理学通讯, 1990, 26(2): 55-57. [32] 胡能书, 万贤国. 同工酶技术及其应用[M]. 长沙: 湖南科学技术出版社, 1985: 3-105. [33] 梁宏伟, 刘姝, 陈发菊, 等. 银鹊树种子萌发过程中的过氧化物酶和酯酶同工酶的变化. 种子, 2006, 25(5): 38-40. [34] 何忠效, 张树政. 电泳(第二版)[M]. 北京: 科学出版社, 1999. [35] 魏臻武, 盖钧镒. 豆科模式植物——蒺藜苜蓿. 草业学报, 2008, 17(1): 114-120. [36] 宗文杰, 刘坤, 卜海燕, 等. 高寒草甸51种菊科植物种子大小变异及其对种子萌发的影响研究. 兰州大学学报(自然科学版), 2006, 42: 52-55. [37] 陆嘉惠, 吕新, 吴玲, 等. 三种药用甘草种子对盐渍环境的萌发响应及其适宜生态种植区. 草业学报, 2013, 22(2): 195-202. [38] 卢艳敏, 苏长青, 李会芬. 不同盐胁迫对白三叶种子萌发及幼苗生长的影响. 草业学报, 2013, 22(4):123-129. [39] 蔡喜悦, 陈晓德, 李朝政,等. 干旱胁迫下外源钙对石灰岩地区复羽叶亲树种子萌发的影响. 应用生态学报, 2013, 24(5): 1341-1346. [41] 汤绍虎, 周启贵, 孙敏, 等. 外源NO 对渗透胁迫下黄瓜种子萌发、幼苗生长和生理特性的影响. 中国农业科学, 2007,40(2): 419-425. [43] 柴家荣. 不同烟草类型种子萌发期淀粉酶及糖类物质动态研究. 种子, 2006, 25(10): 9-12. [44] 唐静, 侯丽霞, 车永梅, 等. 外源水杨酸与一氧化氮对玉米种子萌发及淀粉酶活性的影响. 安徽农学通报, 2007, 13(19): 40-42. [45] 郑光华, 史忠礼, 赵同芳,等.实用种子生理学[M]. 北京:农业出版社, 1990: 113, 123, 240. [46] 周万海, 师尚礼, 寇江涛. 一氧化氮对NaCl 胁迫下苜蓿种子萌发的影响. 核农学报, 2012,26(4): 710-716. [47] 郑春芳, 姜东, 戴廷波, 等. 外源一氧化氮供体硝普钠浸种对盐胁迫下小麦幼苗碳氮代谢及抗氧化系统的影响. 生态学报, 2010, 30(5): 1174-1183. [48] 樊怀福, 郭世荣, 焦彦生, 等. 外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响. 生态学报, 2007, 27(2): 546-563. [49] 高海宁, 马国泰, 李彩霞, 等. 菌剂对铬(Ⅵ)污染土壤中坪草幼苗生理生化的影响. 草业学报, 2014, 23(4): 189-194. [50] 李江, 吴黄铭, 陈惠萍. 外源CO和NO对水稻种子萌发过程中干旱胁迫损伤的缓解效应. 西北植物学报, 2011, 31(4): 731-738. [51] 张怀山, 赵桂琴, 栗孟飞, 等. 中型狼尾草幼苗对PEG、低温和盐胁迫的生理应答. 草业学报, 2014, 23(2): 180-188. [52] 李西, 吴亚娇, 孙凌霞. 铅胁迫对三种暖季型草坪草生长和生理特性的影响. 草业学报, 2014, 23(4): 171-180. [53] 张巍巍, 郑飞翔, 王效科,等. 臭氧对水稻根系活力、可溶性蛋白含量与抗氧化系统的影响. 植物生态学报, 2009, 33(3): 425-432. [54] 列淦文, 叶龙华, 薛摇立. 臭氧胁迫对植物主要生理功能的影响. 生态学报, 2014, 34(2): 294-306. [56] 马淑兰. 刺五加种子休眠机理研究[D]. 长春: 吉林农业大学, 2006. [57] 刘建新, 王鑫, 李博萍. 外源一氧化氮供体SNP对NaCl胁迫下多裂骆驼蓬幼苗氧化损伤的保护效应. 干旱地区农业研究, 2009, 27(6): 139-143. [58] 孙立荣, 郝福顺, 吕建洲, 等. 外源一氧化氮对盐胁迫下黑麦草幼苗生长及生理特性的影响. 生态学报, 2008, 28(11): 5714-5722. |