[1] Qiu J. China: the third pole. Nature News, 2008, 454: 393-396. [2] Yao T D, Thompson L G, Mosbrugger V, et al . Third pole environment (TPE). Environmental Development, 2012, 3: 52-64. [3] Yang K, Ye B S, Zhou D G, et al . Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 2011, 109(3): 517-534. [4] Bartholomé E, Belward A. GLC2000: a new approach to global land cover mapping from earth observation data. International Journal of Remote Sensing, 2005, 26(9): 1959-1977. [5] Gao Y H, Zhou X, Wang Q, et al . Vegetation net primary productivity and its response to climate change during 2001-2008 in the Tibetan Plateau. Science of the Total Environment, 2013, 444: 356-362. [6] Chen B X, Zhang X Z, Tao J, et al . The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agricultural and Forest Meteorology, 2014, 189/190: 11-18. [7] Harris R B. Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. Journal of Arid Environments, 2010, 74(1): 1-12. [8] Wang J S, Zhang X Z, Chen B X, et al . Causes and restoration of degraded alpine grassland in northern Tibet. Journal of Resources and Ecology, 2013, 4(1): 43-49. [9] Shang Z H, Long R J. Formation causes and recovery of the “Black Soil Type” degraded alpine grassland in Qinghai-Tibetan Plateau. Frontiers of Agriculture in China, 2007, 1(2): 197-202. [10] Yi S H, Zhou Z Y, Ren S L, et al . Effects of permafrost degradation on alpine grassland in a semi-arid basin on the Qinghai-Tibetan Plateau. Environmental Research Letters, 2011, 6(4): 045403. [11] Davidson A D, Detling J K, Brown J H. Ecological roles and conservation challenges of social, burrowing, herbivorous mammals in the world’s grasslands. Frontiers in Ecology and the Environment, 2012, 10(9): 477-486. [12] Zhang Y M, Liu J K. Effects of plateau zokors ( Myospalax fontanierii ) on plant community and soil in an alpine meadow. Journal of Mammalogy, 2003, 84(2): 644-651. [13] Zhou H K, Zhao X Q, Tang Y H, et al . Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassland Science, 2005, 51(3): 191-203. [14] Lai C H, Smith A T. Keystone status of plateau pikas ( Ochotona curzoniae ): effect of control on biodiversity of native birds. Biodiversity & Conservation, 2003, 12(9): 1901-1912. [15] Noble J C, Mueller W J, Detling J K, et al . Landscape ecology of the burrowing bettong: warren distribution and patch dynamics in semiarid eastern Australia. Austral Ecology, 2007, 32(3): 326-337. [16] Davidson A D, Lightfoot D C. Keystone rodent interactions: prairie dogs and kangaroo rats structure the biotic composition of a desertified grassland. Ecography, 2006, 29(5): 755-765. [17] Dong Q M, Zhao X Q, Wu G L, et al . A review of formation mechanism and restoration measures of “black-soil-type” degraded grassland in the Qinghai-Tibetan Plateau. Environmental Earth Sciences, 2013, 70(5): 2359-2370. [18] Su J H, Ji W H, Howitt R, et al . Novel microsatellite markers obtained from Gansu zokor ( Eospalax cansus ) and cross-species amplification in Plateau zokor ( Eospalax baileyi ). Biochemical Systematics and Ecology, 2014, 57: 128-132. [19] Xie J X, Lin G H, Liu C X, et al . Diet selection in overwinter caches of plateau zokor ( Eospalax baileyi ). Acta Theriologica, 2014, 59(2): 337-345. [20] Li X G, Zhang M L, Li Z T, et al . Dynamics of soil properties and organic carbon pool in topsoil of zokor-made mounds at an alpine site of the Qinghai-Tibetan Plateau. Biology and Fertility of Soils, 2009, 45(8): 865-872. [21] Zhang L F, Zhang X Z, Zhang Y K, et al . Effects of zokor-mound succession on plant functional group and productivity. Acta Prataculturae Sinica, 2014, 23(2): 305-312. [22] Yang Y B, Xin X J, Yang X, et al . Plant diversity variations in zokor-mound communities along a successional stage in sub-alpine meadow. Acta Prataculturae Sinica, 2010, 19(1): 14-20. [23] Zhao Y, Zhang H S, Zhang D G. Impact of zokor on soil nutrients of alpine meadow in Tianzhu. Grassland and Turf, 2009, 5: 17-19. [24] Wan X L, Jiang X L, Zhang W G. Effects of slope positions and exposures of plateau zokor mounds on vegetation recovery. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(4): 812-818. [25] Han T H, Zhang W G. Features of vegetation in Myospalax baileyi habitat. Acta Prataculturae Sinica, 1999, 8(2): 43-49. [26] Jiang X L, Zhang W G, Yang Z Y, et al . Plant diversity variations in zokor-mound communities along a successional stage. Chinese Journal of Applied Ecology, 2004, 15(5): 814-818. [27] He J L, Zhang J S, Yang Y B, et al . The study of patterns and characteristics of plateau zokor mound. Acta Prataculturae Sinica, 2006, 15(1): 107-112. [28] Bao S D. Soil Agro-chemistrical Analysis[M]. Beijing: China Agriculture Press, 2005. [29] Wang Q Y, Bian J H, Shi Y Z. Influence of plateau zokor mounds on the vegetation nutrients in a alpine meadow. Acta Theriologia Sinica, 1993, 13(1): 31-37. [30] Huntly N, Inouye R. Pocket gophers in ecosystems: patterns and mechanisms. BioScience, 1988, 38(11): 786-793. [31] Whicker A D, Detling J K. Ecological consequences of prairie dog disturbances. BioScience, 1988, 38(11): 778-785. [32] Hu L, Ade L J, Zi H B, et al . Effects of plateau zokor disturbance and restoration years on soil nutrients and microbial functional diversity in alpine meadow. Chinese Journal of Applied Ecology, 2015, 26(9): 2794-2802. [33] Bao G S, Wang H S, Zeng H, et al . Study of the allocation pattern of soil nutrients in plateau zokor mounds of different ages. Acta Ecologica Sinica, 2016, 36(7): 1824-1831. [34] Reichman O, Seabloom E W. The role of pocket gophers as subterranean ecosystem engineers. Trends in Ecology & Evolution, 2002, 17(1): 44-49. [35] Laycock W, Richardson B. Long-term effects of pocket gopher control on vegetation and soils of a subalpine grassland. Journal of Range Management, 1975, 28(6): 458-462. [36] Wang T C, Xiong Y C, Ge J P, et al . Four-year dynamic of vegetation on mounds created by zokors ( Myospalax baileyi ) in a subalpine meadow of the Qinghai-Tibet Plateau. Journal of Arid Environments, 2008, 72(2): 84-96. [37] Simkin S M, Michener W K, Wyatt R. Mound microclimate, nutrients and seedling survival. The American Midland Naturalist, 2004, 152(1): 12-24. [38] Yurkewycz R P, Bishop J G, Crisafulli C M, et al . Gopher mounds decrease nutrient cycling rates and increase adjacent vegetation in volcanic primary succession. Oecologia, 2014, 176(4): 1135-1150. [39] Sherrod S K, Seastedt T R. Effects of the northern pocket gopher ( Thomomys talpoides ) on alpine soil characteristics, Niwot Ridge, CO. Biogeochemistry, 2001, 55(2): 195-218. [40] Litaor M I, Mancinelli R, Halfpenny J. The influence of pocket gophers on the status of nutrients in alpine soils. Geoderma, 1996, 70(1): 37-48. [41] Wang T C. Study on Dynamic of Edge Effect and Vegetation Restoration on Mounds Created by Zokors ( Myospalax fontanierii ) in a Alpine Meadow[D]. Lanzhou: Lanzhou University, 2007. [42] Reichman O, Bendix J, Seastedt T. Distinct animal-generated edge effects in a tallgrass prairie commusity. Ecology, 1993, 74(4): 1281-1285. [43] Kalisz P, Davis W. Effect of prairie voles on vegetation and soils in central Kentucky. American Midland Naturalist, 1992, 127(2): 392-399. [44] Sarah L O B, Julie D J. Physical and chemical protection in hierarchical soil aggregates regulates soil carbon and nitrogen recovery in restored perennial grasslands. Soil Biology and Biochemistry, 2013, 61: 1-13. [21] 张灵菲, 张新中, 张燕堃, 等. 鼢鼠土丘演替对植物功能群与生产力的影响. 草业学报, 2014, 23(2): 305-312. [22] 杨莹博, 辛小娟, 杨雪, 等. 鼢鼠土丘植被恢复演替过程中的物种多样性变化. 草业学报, 2010, 19(1): 14-20. [23] 赵云, 张鹤山, 张德罡. 鼢鼠破坏对天祝高寒草地土壤营养的影响. 草原与草坪, 2009, 5: 17-19. [24] 万秀莲, 江小雷, 张卫国. 鼢鼠鼠丘不同坡位和坡向对植被恢复的影响. 西北植物学报, 2008, 28(4): 812-818. [25] 韩天虎, 张卫国. 高原鼢鼠栖息地的植被特征. 草业学报, 1999, 8(2): 43-49. [26] 江小雷, 张卫国, 杨振宇, 等. 不同演替阶段鼢鼠土丘群落植物多样性变化研究. 应用生态学报, 2004, 15(5): 814-818. [27] 何俊龄, 张金沙, 杨莹博, 等. 高原鼢鼠土丘空间格局及主要特征研究. 草业学报, 2006, 15(1): 107-112. [28] 鲍士旦. 土壤农化学分析[M]. 北京: 中国农业出版社, 2005. [29] 王权业, 边疆晖, 施银柱. 高原鼢鼠土丘对矮嵩草草甸植被演替及土壤营养元素的作用. 兽类学报, 1993, 13(1): 31-37. [32] 胡雷, 阿的鲁骥, 字洪标, 等. 高原鼢鼠扰动及恢复年限对高寒草甸土壤养分和微生物功能多样性的影响. 应用生态学报, 2015, 26(9): 2794-2802. [33] 鲍根生, 王宏生, 曾辉, 等. 不同形成时间高原鼢鼠鼠丘土壤养分分配规律. 生态学报, 2016, 36(7): 1824-1831. [41] 王太春. 高寒草甸鼢鼠土丘的植被恢复与边缘效应动态的研究[D]. 兰州: 兰州大学, 2007. |