[1] Mckenna D R, Mies P D, Baird B E, et al . Biochemical and physical factors affecting discoloration characteristics of 19 bovine muscles. Meat Science, 2005, 70(4): 665-682. [2] Descalzo A M, Sancho A M. A review of natural antioxidants and their effects on oxidative status, odor and quality of fresh beef produced in Argentina. Meat Science, 2008, 79(3): 423-436. [3] Gray J I, Gomaa E A, Buckley D J. Oxidative quality and shelf life of meats. Meat Science, 1996, 43(S1): 111-123. [4] Morrissey P A, Sheehy P J A, Galvin K, et al . Lipid stability in meat and meat products. Meat Science, 1998, 49(S1): S73-S86. [5] Decker E A. The role of phenolics, conjugated linoleic acid, carnosine, and pyrroloquinoline quinone nonessential dietary antioxidants. Nutrition Reviews, 1995, 53(3): 49-58. [6] Zhou S Y, Decker E A. Ability of carnosine and other skeletal muscle components to quench unsaturated aldehydic lipid oxidation products. Journal of Agricultural and Food Chemistry, 1999, 47(1): 51-55. [7] Wood J D, Enser M. Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. British Journal of Nutrition, 1997, 78: S49-S60. [8] Vasta V, Priol O A. Ruminant fat volatiles as affected by diet: A review. Meat Science, 2006, 73(2): 218-228. [9] Santos-Silva J, Bessa R J B, Santos-Silva F. Effect of genotype, feeding system and slaughter weight on the quality of light lambs II. Fatty acid composition of meat. Livestock Production Science, 2002, 77(2-3): 187-194. [10] Aurousseau B, Bauchart D, Calichon E, et al . Effect of grass or concentrate feeding systems and rate of growth on triglyceride and phospholipid and their fatty acids in the M. longissimus thoracis of lambs. Meat Science, 2004, 66(3): 531-541. [11] Faustman C, Sun Q, Mancini R, et al . Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Science, 2010, 86(1): 86-94. [12] Insani E M, Eyherabide A, Grigioni G, et al . Oxidative stability and its relationship with natural antioxidants during refrigerated retail display of beef produced in Argentina. Meat Science, 2008, 79(3): 444-452. [13] Descalzo A M, Insani E M, Biolatto A, et al . Influence of pasture or grain-based diets supplemented with vitamin E on antioxidant/oxidative balance of Argentine beef. Meat Science, 2005, 70(1): 35-44. [14] Mercier Y, Gatellier P, Renerre M. Lipid and protein oxidation in vitro , and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet. Meat Science, 2004, 66(2): 467-473. [15] Vasta V, Pagano R I, Luciano G, et al . Effect of morning vs. afternoon grazing on intramuscular fatty acid composition in lamb. Meat Science, 2012, 90(1): 93-98. [16] Zhang X Q. Effects and Its Mechanism of Restricting Access Time to Pasture Combined with Indoor Feeding on Ingestive Behaviour and Production Performance of Lambs[D]. Beijing: China Agricultural University, 2013. [17] Zhang X Q, Zhang Y J, Yan W H, et al . Fatty acid composition of herbage and its changes of Stipa grassland. Chinese Journal of Grassland, 2013, 35(1): 116-120. [18] GB/T 22223-2008, Determination of Total Fat Saturated Fat and Unsaturated Fat in Foods-Hydrolytic Extraction-Gas Chromatography[S]. Beijing: Standards Press of China, 2008. [19] Gu L Y, Zhang L, Zhang Y M. Impact of different swimming training on the levels of serum MDA, SOD and T-AOC of mouse. Journal of Wuhan Institute of Physical Education, 2004, 38(3): 28-31. [20] Jenkins R R. Lipid peroxidative in skeletal muscle during a trophy and acute exercise. Medicine and Science in Sports and Exercise, 1983, 15(2): 93-94. [21] Oh-ishi S, Kizald T, Nagasawa J. Effects of endurance training on superoxide dismutase activity, content and mRNA expression in rat muscle. Clinical and Experimental Pharmacology & Physiology, 1997, 24(5): 326-327. [22] Zhang X Q, Luo H L, Hou X Y, et al . Effect of restricted access to pasture and indoor supplementation on ingestive behaviour, dry matter intake and weight gain of growing lambs. Livestock Science, 2014, 167(1-4): 137-143. [23] Meng Z C. Effect of the Condition of Confinedness and Grazing on Immunity Function and Antioxidation in Cashmere Goat[D]. Hohhot: Inner Mongolian Agricultural University, 2008. [24] Si L, Liu Z Q, Li Q P. Study on selenium contents of soils and high quality herbages in Inner Mongolia grasslands. Journal of Inner Mongolia Institute of Agriculture & Animal Husbandry, 1999, 20(1): 25-28. [25] Zhang H F. Feeding Standard for Animals[M]. Beijing: China Agriculture Press, 2010. [26] Shahidi F. Prevention of lipid oxidation in muscle foods by nitrite and nitrite free compositions. Physical Review Letters, 1992, 96(22): 161-182. [27] Yang A, Lanari M C, Brewster M, et al . Lipid stability and meat colour of beef from pasture- and grain-fed cattle with or without vitamin E supplement. Meat Science, 2002, 60(1): 41-50. [28] Luciano G. The restriction of grazing duration does not compromise lamb meat colour and oxidative stability. Meat Science, 2012, 92(1): 30-35. [29] Li Z G, Han G D, Zhao M L, et al . An overview of the prospects for family farms. Acta Prataculturae Sinica, 2015, 24(1): 158-167. [16] 张晓庆. 限时放牧加补饲对乌珠穆沁羔羊采食行为与产肉性能的影响机制[D]. 北京: 中国农业大学, 2013. [17] 张晓庆, 张英俊, 闫伟红, 等. 克氏针茅草原7种植物脂肪酸组分及其变化. 中国草地学报, 2013, 35(1): 116-120. [18] GB/T 22223-2008, 食品中总脂肪、饱和脂肪(酸)、不饱和脂肪(酸)的测定水解提取-气相色谱法[S]. 北京: 中国标准出版社, 2008. [19] 顾丽燕, 章岚, 张一民. 不同游泳活动对大鼠MDA、SOD、T-AOC的影响. 武汉体育学报, 2004, 38(3): 28-31. [23] 蒙诚志. 舍饲与放牧条件对绒羊免疫功能和抗氧化功能的影响[D]. 呼和浩特: 内蒙古农业大学, 2008. [24] 司丽, 刘作清, 李其萍. 内蒙古草原土壤与优良牧草中硒含量水平研究. 蒙古农牧学院学报, 1999, 20(1): 25-28. [25] 张宏福. 动物营养参数与饲用标准[M]. 北京: 中国农业出版社, 2010. [29] 李治国, 韩国栋, 赵萌莉, 等. 家庭牧场研究现状及展望. 草业学报, 2015, 24(1): 158-167. |