Acta Prataculturae Sinica ›› 2016, Vol. 25 ›› Issue (10): 191-201.DOI: 10.11686/cyxb2015574
• Orginal Article • Previous Articles Next Articles
YE De-You1, *, QI Yong-Hong2, LI Min-Quan3
Received:
2015-12-23
Online:
2016-10-20
Published:
2016-10-20
YE De-You, QI Yong-Hong, LI Min-Quan. Research progress on signal transduction and regulation mechanisms in plant-nematode interactions[J]. Acta Prataculturae Sinica, 2016, 25(10): 191-201.
[1] Jones J D G, Dangl J L. The plant immune system. Nature, 2006, 444(7117): 323-329. [2] Glowacki S, Macioszek V K, Kononowicz A K. R proteins as fundamentals of plant innate immunity. Cellular and Molecular Biology Letters, 2011, 16(1): 1-24. [3] Bari R, Jones J D G. Role of plant hormones in plant defence responses. Plant Molecular Biology, 2009, 69(4): 473-488. [4] Williamson V M, Gleason C A. Plant-nematode interactions. Current Opinion in Plant Biology, 2003, 6(4): 327-333. [5] Robinson A F. Reniform in U.S. cotton: when, where, why, and some remedies. Annual Review of Phytopathology, 2007, 45(1): 263-288. [6] Hewezi T, Baum T J. Manipulation of plant cells by cyst and root-knot nematode effectors. Molecular Plant-Microbe Interactions, 2013, 26(1): 9-16. [7] Mitchum M G, Hussey R S, Baum T J, et al . Nematode effector proteins: an emerging paradigm of parasitism. The New Phytologist, 2013, 199(4): 879-894. [8] Fuller V L, Lilley C J, Urwin P E. Nematode resistance. The New Phytologist, 2008, 180(1): 27-44. [9] Cai D, Kleine M, Kifle S, et al . Positional cloning of a gene for nematode resistance in sugar beet. Science, 1997, 275(5301): 832-834. [10] Milligan S B, Bodeau J, Yaghoobi J, et al . The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. The Plant Cell, 1998, 10(8): 1307-1319. [11] van der Vossen E A G, Rouppe van der Voort J N A M, Kanyuka K, et al . Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. The Plant Journal, 2000, 23(5): 567-576. [12] Ernst K, Kumar A, Kriseleit D, et al . The broad-spectrum potato cyst nematode resistance gene ( Hero ) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. The Plant Journal, 2002, 31(2): 127-136. [13] Paal J, Henselewski H, Muth J, et al . Molecular cloning of the potato Gro 1-4 gene conferring resistance to pathotype Ro1 of the root cyst nematode Globodera rostochiensis , based on a candidate gene approach. The Plant Journal, 2004, 38(2): 285-297. [14] Claverie M, Dirlewanger E, Bosselut N, et al . The Ma gene for complete-spectrum resistance to Meloidogyne species in Prunus is a TNL with a huge repeated C-terminal post-LRR region. Plant Physiology, 2011, 156(2): 779-792. [15] Goverse A, Smant G. The activation and suppression of plant innate immunity by parasitic nematodes. Annual Review of Phytopathology, 2014, 52(1): 243-265. [16] Sacco M A, Koropacka K, Grenier E, et al . The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death. PLOS Pathogens, 2009, 5(8): 1-14. [17] Semblat J P, Rosso M N, Hussey R S, et al . Molecular cloning of a cDNA encoding an amphidsecreted putative avirulence protein from the root-knot nematode Meloidogyne incognita . Molecular Plant-Microbe Interactions, 2001, 14(1): 72-79. [18] Gleason C A, Liu Q L, Williamson V M. Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi -1 leads to acquisition of virulence. Molecular Plant-Microbe Interactions, 2008, 21(5): 576-585. [19] Khallouk S, Voisin R, Van Ghelder C, et al . Histological mechanisms of the resistance conferred by the Ma gene against Meloidogyne incognita in Prunus spp. Phytopathology, 2011, 101(8): 945-951. [20] Hwang C F, Williamson V M. Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi. The Plant Journal, 2003, 34(5): 585-593. [21] Tameling W I, Elzinga S D, Darmin P S, et al . The tomato R gene products I-2 and MI-1 are functional ATP binding proteins with ATPase activity. The Plant Cell, 2002, 14(11): 2929-2939. [22] Lukasik-Shreepaathy E, Slootweg E, Richter H, et al . Dual regulatory roles of the extended N terminus for activation of the tomato MI-1.2 resistance protein. Molecular Plant-Microbe Interactions, 2012, 25(8): 1045-1057. [23] Martinez de Ilarduya O, Nombela G, Hwang C F, et al . Rme 1 is necessary for Mi -1-mediated resistance and acts early in the resistance pathway. Molecular Plant-Microbe Interactions, 2004, 17(1): 55-61. [24] Bhattarai K K, Li Q, Liu Y L, et al . The Mi -1-mediated pest resistance requires Hsp 90 and Sgt 1. Plant Physiology, 2007, 144(1): 312-323. [25] Suzuki C, Tanaka Y, Takeuchi T, et al . Genetic relationships of soybean cyst nematode resistance originated in Gedenshirazu and PI84751 on Rhg 1 and Rhg 4 loci. Breeding Science, 2012, 61(5): 602-607. [26] Cook D E, Lee T G, Guo X L, et al . Copy number variation of multiple genes at Rhg 1 mediates nematode resistance in soybean. Science, 2012, 338(6111): 1206-1209. [27] Cook D E, Bayless A M, Wang K, et al . Distinct copy number, coding sequence, and locus methylation patterns underlie Rhg 1-mediated soybean resistance to soybean cyst nematode. Plant Physiology, 2014, 165(2): 630-647. [28] Liu S M, Kandoth P K, Warren S D, et al . A soybean cyst nematode resistance gene points to a new mechanism of plant resistance to pathogens. Nature, 2012, 492(7428): 256-260. [29] Uehara T, Sugiyama S, Matsuura H, et al . Resistant and susceptible responses in tomato to cyst nematode are differentially regulated by salicylic acid. Plant Cell Physiology, 2010, 51(9): 1524-1536. [30] Molinari S, Fanelli E, Leonetti P. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi -1-mediated and SA-induced resistance to root-knot nematodes. Molecular Plant Pathology, 2013, 15(3): 255-264. [31] Kandoth P K, Ithal N, Recknor J, et al . The soybean Rhg 1 locus for resistance to the soybean cyst nematode Heterodera glycines regulates the expression of a large number of stress- and defense-related genes in degenerating feeding cells. Plant Physiology, 2011, 155(4): 1960-1975. [32] Branch C, Hwang C F, Navarre D A, et al . Salicylic acid is part of the Mi -1-mediated defense response to root-knot nematode in tomato. Molecular Plant-Microbe Interactions, 2004, 17(4): 351-356. [33] Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 2007, 10(4): 366-371. [34] Bhattarai K K, Atamian H S, Kaloshian I, et al . WRKY72-type transcription factors contribute to basal immunity in tomato and Arabidopsis as well as gene-for-gene resistance mediated by the tomato R gene Mi -1. The Plant Journal, 2010, 63(2): 229-240. [35] Ali M A, Wieczorek K, Kreil D P, et al . The beet cyst nematode Heterodera schachtii modulates the expression of WRKY transcription factors in syncytia to favour its development in Arabidopsis roots. PLOS One, 2014, 9(7): 1-17. [36] Wubben M J, Jin J, Baum T J. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Molecular Plant-Microbe Interactions, 2008, 21(4): 424-432. [37] Lin J Y, Mazarei M, Zhao N, et al . Overexpression of a soybean salicylic acid methyltransferase gene confers resistance to soybean cyst nematode. Plant Biotechnology Journal, 2013, 11(9): 1135-1145. [38] Vlot A C, Dempsey D A, Klessig D F. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology, 2009, 47(1): 177-206. [39] Park S W, Kaimoyo E, Kumar D, et al . Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 2007, 318(5847): 113-116. [40] Youssef R M, MacDonald M H, Brewer E P, et al . Ectopic expression of AtPAD 4 broadens resistance of soybean to soybean cyst and root-knot nematodes. BMC Plant Biology, 2013, 13(1): 1-11. [41] Klink V P, Overall C C, Alkharouf N W, et al . Laser capture microdissection (LCM) and comparative microarray expression analysis of syncytial cells isolated from incompatible and compatible soybean ( Glycine max ) roots infected by the soybean cyst nematode ( Heterodera glycines ). Planta, 2007, 226(6): 1389-1409. [42] Wu Y, Zhang D, Chu J Y, et al . The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports, 2012, 1(6): 639-647. [43] Parkhi V, Kumar V, Campbell L M, et al . Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR 1. Transgenic Research, 2010, 19(6): 959-975. [44] Priya D B, Somasekhar N, Prasad J S, et al . Transgenic tobacco plants constitutively expressing Arabidopsis NPR1 show enhanced resistance to root-knot nematode, Meloidogyne incognita . BMC Research Notes, 2011, 4(1): 1-5. [45] Matthews B F, Beard H, Brewer E, et al . Arabidopsis genes, AtNPR 1, AtTGA 2 and AtPR -5, confer partial resistance to soybean cyst nematode ( Heterodera glycines ) when overexpressed in transgenic soybean roots. BMC Plant Biology, 2014, 14(1): 1-19. [46] Hewezi T, Howe P J, Maier T R, et al . Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii . Plant Physiology, 2010, 152(2): 968-984. [47] Barcala M, Garcia A, Cabrera J, et al . Early transcriptomic events in microdissected Arabidopsis nematodeinduced giant cells. The Plant Journal, 2010, 61(4): 698-712. [48] Portillo M, Cabrera J, Lindsey K, et al . Distinct and conserved transcriptomic changes during nematode-induced giant cell development in tomato compared with Arabidopsis : a functional role for gene repression. The New Phytologist, 2013, 197(4): 1276-1290. [49] Gao X Q, Starr J, Göbel C, et al . Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Molecular Plant-Microbe Interactions, 2008, 21(1): 98-109. [50] Mosblech A, Feussner I, Heilmann I. Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiology and Biochemistry, 2009, 47(6): 511-517. [51] Nahar K, Kyndt T, De Vleesschauwer D, et al . The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiology, 2011, 157(1): 305-316. [52] Bhattarai K K, Xie Q G, Mantelin S, et al . Tomato susceptibility to root-knot nematodes requires an intact jasmonic acid signaling pathway. Molecular Plant-Microbe Interactions, 2008, 21(9): 1205-1214. [53] Mantelin S, Bhattarai K K, Jhaveri T Z, et al . Mi -1-mediated resistance to Meloidogyne incognita in tomato may not rely on ethylene but hormone perception through ETR3 participates in limiting nematode infection in a susceptible host. PLOS ONE, 2013, 8(5): 1-8. [54] Atamian H S, Eulgem T, Kaloshian I. SlWRKY 70 is required for Mi -1-mediated resistance to aphids and nematodes in tomato. Planta, 2012, 235(2): 299-309. [55] Ozalvo R, Cabrera J, Escobar C, et al . Two closely related members of Arabidopsis 13-lipoxygenases (13-LOXs), LOX3 and LOX4, reveal distinct functions in response to plant-parasitic nematode infection. Molecular Plant Pathology, 2013, 15(4): 319-332. [56] Fujimoto T, Tomitaka Y, Abe H, et al . Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode ( Meloidogyne incognita ) in tomato plants ( Solanum lycopersicum ) after foliar treatment with methyl jasmonate. Journal of Plant Physiology, 2011, 168(10): 1084-1097. [57] Iberkleid I, Vieira P, de Almeida Engler J, et al . Fatty acid-and retinol-binding protein, Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes. PLOS ONE, 2013, 8(5): 1-14. [58] Kyndt T, Nahar K, Haegeman A, et al . Comparing systemic defence-related gene expression changes upon migratory and sedentary nematode attack in rice. Plant Biology, 2012, 14(Suppl 1): 73-82. [59] Tucker M L, Xue P, Yang R. 1-Aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC synthase expression in soybean roots, root tips, and soybean cyst nematode ( Heterodera glycines )-infected roots. Journal of Experimental Botany, 2010, 61(2): 463-472. [60] Wubben M J E, Su H, Rodermel S R, et al . Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana . Molecular Plant-Microbe Interactions, 2001, 14(10): 1206-1212. [61] Fudali S L, Wang C L, Williamson V M. Ethylene signaling pathway modulates attractiveness of host roots to the root-knot nematode Meloidogyne hapla . Molecular Plant-Microbe Interactions, 2013, 26(1): 75-86. [62] Wubben M J E, Rodermel S R, Baum T J. Mutation of a UDP-glucose-4-epimerase alters nematode susceptibility and ethylene responses in Arabidopsis roots. The Plant Journal, 2004, 40(5): 712-724. [63] Mazarei M, Liu W, Al-Ahmad H, et al . Gene expression profiling of resistant and susceptible soybean lines infected with soybean cyst nematode. Theoretical and Applied Genetics, 2011, 123(7): 1193-1206. [64] Mazarei M, Elling A A, Maier T R, et al . GmEREBP1 is a transcription factor activating defense genes in soybean and Arabidopsis . Molecular Plant-Microbe Interactions, 2007, 20(2): 107-119. [65] Grunewald W, Cannoot B, Friml J, et al . Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection. PLOS Pathogens, 2009, 5(1): 1-7. [66] Lee C, Chronis D, Kenning C, et al . The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiology, 2011, 155(2): 866-880. [67] Karczmarek A, Overmars H, Helder J, et al . Feeding cell development by cyst and root-knot nematodes involves a similar early, local and transient activation of a specific auxin-inducible promoter element. Molecular Plant Pathology, 2004, 5(4): 343-346. [68] Absmanner B, Stadler R, Hammes U Z. Phloem development in nematode-induced feeding sites: the implications of auxin and cytokinin. Frontiers in Plant Science, 2013, 241(4): 1-14. [69] Wang X H, Replogle A, Davis E L, et al . The tobacco Cel 7 gene promoter is auxin-responsive and locally induced in nematode feeding sites of heterologous plants. Molecular Plant Pathology, 2007, 8(4): 423-436. [70] Matthews B F, Beard H, MacDonald M H, et al . Engineered resistance and hypersusceptibility through functional metabolic studies of 100 genes in soybean to its major pathogen, the soybean cyst nematode. Planta, 2013, 237(5): 1337-1357. [71] Hewezi T, Piya S, Richard G, et al . Spatial and temporal expression patterns of auxin response transcription factors in the syncytium induced by the beet cyst nematode Heterodera schachtii in Arabidopsis . Molecular Plant Pathology, 2014, 15(7): 730-736. [72] Cabrera J, Diaz-Manzano F E, Sanchez M, et al . A role for lateral organ boundaries-domain 16 during the interaction Arabidopsis - Meloidogyne spp. provides a molecular link between lateral root and root-knot nematode feeding site development. The New Phytologist, 2014, 203(2): 632-645. [73] Grunewald W, Karimi M, Wieczorek K, et al . A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiology, 2008, 148(1): 358-368. [74] Tripathy B C, Oelmuller R. Reactive oxygen species generation and signaling in plants. Plant Signaling & Behavior, 2012, 7(12): 1621-1633. [75] Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. Journal of Experimental Botany, 2014, 65(5): 1229-1240. [76] Melillo M T, Leonetti P, Leone A, et al . ROS and NO production in compatible and incompatible tomato- Meloidogyne incognita interactions. European Journal of Plant Pathology, 2011, 130(4): 489-502. [77] Dubreuil G, Deleury E, Magliano M, et al . Peroxiredoxins from the plant parasitic root-knot nematode, Meloidogyne incognita , are required for successful development within the host. International Journal for Parasitology, 2011, 41(3/4): 385-396. [78] Siddique S, Matera C, Radakovic Z S, et al . Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species that limit plant cell death and promote infection. Science Signaling, 2014, 320(7): 1-9. [79] Feng B M, Shan L B. ROS open roads to roundworm infection. Science Signaling, 2014, 320(7): 1-5. [80] Katiyar-Agarwal S, Jin H L. Role of small RNAs in host-microbe interactions. Annual Review of Phytopathology, 2010, 48(1): 225-246. [81] Axtell M J. Classification and comparison of small RNAs from plants. Annual Review of Plant Biology, 2013, 64(1): 137-159. [82] Shukla L I, Chinnusamy V, Sunkar R. The role of microRNAs and other endogenous small RNAs in plant stress responses. Biochimica et Biophysica Acta, 2008, 1779(11): 743-748. [83] Liu Q, Chen Y Q. Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochemical and Biophysical Research Communications, 2009, 384(1): 1-5. [84] Ji H L, Gheysen G, Denil S, et al . Transcriptional analysis through RNA sequencing of giant cells induced by Meloidogyne graminicola in rice roots. Journal of Experimental Botany, 2013, 64(12): 3885-3898. [85] Sahu P P, Pandey G, Sharma N, et al . Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Reports, 2013, 32(8): 1151-1159. [86] Hewezi T, Howe P, Maier T R, et al . Arabidopsis small RNAs and their targets during cyst nematode parasitism. Molecular Plant-Microbe Interactions, 2008, 21(12): 1622-1634. [87] Hewezi T, Maier T R, Nettleton D, et al . The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection. Plant Physiology, 2012, 159(1): 321-335. [88] Li F, Pignatta D, Bendix C, et al . MicroRNA regulation of plant innate immune receptors. Proceedings of National Academy of Sciences USA, 2012, 109(5): 1790-1795. [89] Shivaprasad P V, Chen H M, Patel K, et al . A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. The Plant Cell, 2012, 24(3): 859-874. [90] Zhu Q H, Fan L J, Liu Y, et al . miR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton. PLOS ONE, 2013, 8(12): 1-11. [91] Marin E, Jouannet V, Herz A, et al . miR390, Arabidopsis TAS3 tasiRNAs, and their auxin response factor targets define an autoregulatory network quantitatively regulating lateral root growth. The Plant Cell, 2010, 22(4): 1104-1117. [92] Yoon E K, Yang J H, Lim J, et al . Auxin regulation of the microRNA390-dependent transacting small interfering RNA pathway in Arabidopsis lateral root development. Nucleic Acids Research, 2010, 38(4): 1382-1391. [93] Fei Q L, Xia R, Meyers B C. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. The Plant Cell, 2013, 25(7): 2400-2415. [94] Qiao Y L, Liu L, Xiong Q, et al . Oomycete pathogens encode RNA silencing suppressors. Nature Genetics, 2013, 45(3): 330-333. [95] Charlton W L, Harel H Y, Bakhetia M, et al . Additive effects of plant expressed double-stranded RNAs on root-knot nematode development. International Journal for Parasitology, 2010, 40(7): 855-864. [96] Dalzell J J, Warnock N D, Stevenson M A, et al . Short interfering RNA-mediated knockdown of drosha and pasha in undifferentiated Meloidogyne incognita eggs leads to irregular growth and embryonic lethality. International Journal for Parasitology, 2010, 40(11): 1303-1310. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||