Acta Prataculturae Sinica ›› 2017, Vol. 26 ›› Issue (7): 213-224.DOI: 10.11686/cyxb2016360
Previous Articles Next Articles
WANG Chang1, HE Chun-Gui2, ZHANG Li-Juan1, YANG Xiao-Ming1, *
Received:
2016-09-22
Online:
2017-07-20
Published:
2017-07-20
WANG Chang, HE Chun-Gui, ZHANG Li-Juan, YANG Xiao-Ming. Advances in breeding of pea (Pisum sativum) with resistance to pea weevil (Bruchus pisorum) and its integrated management[J]. Acta Prataculturae Sinica, 2017, 26(7): 213-224.
[1] FAO. FAOSTAT Database[DB/OL]. 2010 [2016-08-08]. http: //www.fao.org/faostat. [2] FAO. FAOSTAT Database[DB/OL]. 2014 [2016-08-08]. http: //www.fao.org/faostat. [3] Teshome A, Mendesil E, Geleta M, et al . Screening the primary gene pool of field pea ( Pisum sativum L.) in Ethiopia for resistance against pea weevil ( Bruchus pisorum L.). Genetic Resources and Crop Evolution, 2015, 62(4): 525-538. [4] Messiaen C M, Seif A A, Jarso M, et al . Pisum sativum L.[DB/OL]//Brink M, Belay G. Record from PROTA4U. (2013-11-18) [2016-08-08]. http://www.prota4u.org/search.asp. [5] Sharma H C, Srivastava C P, Durairaj C, et al . Pest management in grain legumes and climate change[M]//Yadav S S, McNeil D L, Redden R, et al . Climate Change and Management of Cool Season Grain Legume Crops[M]. Berlin: Springer, 2010: 115-139. [6] Ali K, Chichaybelu M, Abate T, et al . Two decades of research on insect pests of grain legumes[C]//Tadesse A. Increasing Crop Production Through Improved Plant Protection. Addis Ababa: Plant Protection Society of Ethiopia (PPSE) and EIAR, 2008: 38-84. [7] Plantwise. Bruchus pisorum Distribution Map[DB/OL]. (2014-01-22) 2016-08-08. http://www.plantwise.org/KnowledgeBank. [8] Hardie D, Clement S. Development of bioassays to evaluate wild pea germplasm for resistance to pea weevil (Coleoptera: Bruchidae). Crop Protection, 2001, 20(6): 517-522. [9] Teka W. The importance and distribution of pea weevil ( Bruchus pisorum ) in the Amhara region[C]//Proceedings of a National Workshop on the Management of Pea Weevil ( Bruchus pisorum ). Ethiopia: Bahir Dar Press, 2002: 25-27. [10] Xu Z D. Various measures of control the pea weevil and broad bean weevil by farmers in Northern Jiangsu Province. Scientia Agricultura Sinica, 1952, 7: 28-29. 徐忠谠. 苏北农民防治蚕豆象和豌豆象的各种措施. 中国农业科学, 1952, 7: 28-29. [11] Zhu X S. The studies on pea weevil investigation and its control in North Western China. Acta Entomologica Sinica, 1955, 5(1): 105-114. 朱象三. 北区豌豆象调查与防治的研究. 昆虫学报, 1955, 5(1): 105-114. [12] Shou Z B. Occurrence and verification in Wuwei district. Plant Protection, 1965, 3(3): 112. 首章北. 武威地区豌豆象的发生与检验. 植物保护, 1965, 3(3): 112. [13] Xie C J. Determination of the egg development temperature threshold and effective accumulated temperature of pea weevil. Plant Quarantine, 2003, 17(4): 220-223. 谢成君. 豌豆象卵发育起点温度和有效积温测定. 植物检疫, 2003, 17(4): 220-223. [14] Lian R F, Wang M C, Mo J P. Occurrence and control of pea weevil in Dingxi city of Gansu. Gansu Agricultural Science and Technology, 2008, 10: 59-60. 连荣芳, 王梅春, 墨金萍. 豌豆象在定西市的发生与防治. 甘肃农业科技, 2008, 10: 59-60. [15] Brindley T A. Some notes on the biology of the pea weevil Bruchus pisorum L.(Coleoptera, Bruchidae) at Moscow, Idaho. Journal of Economic Entomology, 1933, 26(6): 1058-1062. [16] Pesho G R, Muehlbauer F J, Harberts W H. Resistance of pea introductions to pea weevil. Journal of Economic Entomology, 1977, 70(2): 30-33. [17] The Luotian Field Crop Disease and Insect Pests Forecast Station. Biology and control of the pea weevil in Luotian, Hubei. Acta Entomologica Sinica, 1966, 15(4): 288-293. 罗田县农作物病虫预测预报站. 湖北罗田豌豆象的生物学和防治. 昆虫学报, 1966, 15(4): 288-293. [18] Clement S L, Wightman J A, Hardie D C, et al . Opportunities for integrated management of insect pests of grain legumes[M]//Knight R. Linking Research and Marketing Opportunities for Pulses in the 21st Century. Dordrecht: Kluwer Academic Publishers, 2000: 467-480. [19] Girsch L, Cate P C, Weinhappel M. A new method for determining the infestation of field beans ( Vicia faba ) and peas ( Pisum sativum ) with bean beetle ( Bruchus rufimanus ) and pea beetle ( Bruchus pisorum ), respectively. Seed Science and Technology, 1999, 27: 377-383. [20] Clement S L, McPhee K E, Elberson L R, et al . Pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae), resistance in Pisum sativum × Pisum fulvum interspecific crosses. Plant Breeding, 2009, 128(5): 478-485. [21] Brindley T A, Chamberlin J C, Schopp R. The pea weevil and methods for its control[M]//Farmers’ Bulletin. Washington: US Department of Agriculture, 1956: 1-24. [22] Pesho G R, van Houten R J. Pollen and sexual maturation of the pea weevil (Coleoptera: Bruchidae). Annals of the Entomological Society of America, 1982, 75(4): 439-443. [23] Annis B A, O’Keeffe L E. Response of two Lathyrus species to infestation by the pea weevil, Bruchus pisorum L. (Coleoptera: Bruchidae). Entomologia Experimentalis Et Applicata, 1984, 35(1): 83-87. [24] Amosa E M. Evaluation of Plant Resistance in Field Pea by Host Plant Choice Behaviour of Pea Weevil ( Bruchus pisorum L.): Implications for Pest Management[D]. Alnarp: Swedish University of Agricultural Sciences, 2015: 1-43. [25] Smith J H, O’Keeffe L E, Muehlbauer F J. Methods of screening dry peas for resistance to the pea weevil (Coleoptera:Bruchidae): variability in seed infestation levels. Journal Economic Entomology, 1982, 75: 530-534. [26] Brindley T A, Chamberlin J C. The pea weevil[C]//Yearbook of Agriculture 1952. Washington: U.S. Department of Agriculture, 1952: 530-537. [27] Al-Rawy M A, Kaddou I K. Pea weevil, Bruchus pisorum (L.) (Coleoptera, Bruchidae) infesting Vicia faba L. in Iraq. Acta Entomologica Bohemoslovaca, 1971, 68(6): 365-371. [28] Horne J, Bailey P. Bruchus pisorum L. (Coleoptera, Bruchidae) control by a knockdown pyrethroid in field peas. Crop Protection, 1991, 10(1): 53-56. [29] Makasheva R K. The Pea[M]. New Delhi, India: Oxonian Press, 1983. [30] Clement S L, Hardie D C, Elberson L R. Variation among accessions of Pisum fulvum for resistance to pea weevil. Crop Science, 2002, 42(6): 2167-2173. [31] Smith A M. Pea weevil ( Bruchus pisorum L.) and crop loss implications for management[M]//Fujii K, Gatehouse A M R, Johnson C D, et al . Bruchids and Legumes: Economics, Ecology and Coevolution. Dordrecht: Kluwer Academic Publishers, 1990: 105-114. [32] Visser J H. Host odor perception in phytophagous insects. Annual Review of Entomology, 2003, 31(1): 121-144. [33] Bruce T J A, Wadhams L J, Woodcock C M. Insect host location: a volatile situation. Trends in Plant Science, 2005, 10(6): 269-274. [34] Bernays E A, Chapman R E. Host-plant Selection by Phytophagous Insects[M]. New York: Chapman & Hall, 1994. [35] Schoonhoven L M, van Loon J J A, Dicke M. Insect-plant Biology[M]. Oxford: Oxford University Press, 2005. [36] Ceballos R, Fernández N, Zúñiga S, et al . Electrophysiological and behavioral responses of pea weevil Bruchus pisorum L. (Coleóptera: Bruchidae) to volatiles collected from its host Pisum sativum L. Chilean Journal of Agricultural Research, 2015, 75(2): 202-209. [37] Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles. Plant Physiology, 2004, 135(4): 1893-1902. [38] Paukku S, Kotiaho J S. Female oviposition decisions and their impact on progeny life-history traits. Journal of Insect Behavior, 2008, 21(6): 505-520. [39] Simmonds M S J, Blaney W M, Birch A N E. Legume seeds: the defence of a wild and cultivated species of Phaseolus against attack by bruchid beetles. Annals of Botany, 1989, 63: 177-184. [40] Redden R J, McGuire J. The genetic evaluation of bruchid resistance in seed of cowpea. Australian Journal of Agricultural Research, 1983, 34(6): 707-715. [41] Fernandez G C J, Talekar N S. Genetics and breeding for bruchid resistance in Asiatic Vigna species[M]//Fujii K, Gatehouse A M R, Johnson C D, et al . Bruchids and Legumes: Economics, Ecology and Coevolution. Dordrecht: Kluwer Academic Publishers, 1990: 209-217. [42] Young N D, Kumar L, Menancio-Hautea D, et al . RFLP mapping of a major bruchid resistance gene in mungbean ( Vigna radiata , L. Wilczek). Theoretical and Applied Genetics, 1992, 84(7): 839-844. [43] Souframanien J, Gupta S, Gopalakrishna T. Identification of quantitative trait loci for bruchid ( Callosobruchus maculatus ) resistance in black gram [ Vigna mungo (L.) Hepper]. Euphytica, 2010, 176(3): 349-356. [44] Fatunla T, Badaru K. Inheritance of resistance to cow-pea weevil ( Callosobruchus maculatus , Fabr.). The Journal of Agricultural Science (Cambridge), 1983, 101(2): 423-426. [45] Lawson D M, Lunde C F, Mutschler M A. Marker-assisted transfer of acylsugarmediated pest-resitance from the wild tomato, Lycopersicon pennellii , to the cultivated tomato, Lycopersicon esculentum . Molecular Breeding, 1997, 3(4): 307-317. [46] Jung C, Cai D, Kleine M. Engineering nematode resistance in crop species. Trends in Plant Science, 1998, 3(7): 266-271. [47] Gallun R L, Patterson F L. Monosomic analysis of wheat for resistance to Hessian-fly. Journal of Heredity, 1977, 68(4): 223-226. [48] Hardie D C, Baker G J, Marshall D R. Field screening of Pisum accessions to evaluate their susceptibility to the pea weevil (Coleoptera: Bruchidae). Euphytica, 1995, 84(2): 155-161. [49] Aryamanesh N, Byrne O, Hardie D C, et al . Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea ( Pisum sativum L.) and Pisum fulvum . Crop & Pasture Science, 2012, 63(7): 612-618. [50] Ben-Ze’ev N, Zohary D. Species relationships in the genus Pisum L. Israel. Journal of Botany, 1973, 22: 73-91. [51] Bryne O M T. Incorporation of Pea Weevil Resistance from Wild Pea ( Pisum fulvum ) into Field Pea ( Pisum sativum L.)[D]. Perth: The University of Western Australia, 2005. [52] Byrne O M, Hardie D C, Khan T N, et al . Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Australian Journal of Agricultural Research, 2008, 59(9): 854-862. [53] Aryamanesh N, Zeng Y, Byrne O, et al . Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping. Theoretical & Applied Genetics, 2014, 127(2): 489-497. [54] Morton R L, Schroeder H E, Bateman K S, et al . Bean α-amylase inhibitor 1 in transgenic peas ( Pisum sativum ) provides complete protection from pea weevil ( Bruchus pisorum ) under field conditions. Proceedings of the National Academy of Sciences, 2000, 97(8): 3820-3825. [55] Ho M F, Whitaker J R. Purification and partial characterization of white kidney bean ( Phaseolus vulgaris ) β-amylase inhibitors from two experimental cultivars. Journal of Food Biochemistry, 1993, 17(17): 15-33. [56] Ho M F, Whitaker J R. Subunit structures and essential amino acid residues of white kidney bean ( Phaseolus vulgaris ) α-amylase inhibitors. Journal of Food Biochemistry, 1993, 17(1): 35-52. [57] Ishimoto M, Kitamura K. Growth inhibitory effects of an α-amylase inhibitor from the Kidney bean , Phaseolus vulgaris (L.) on three species of bruchids (Coleoptera: Bruchidae). Applied Entomology & Zoology, 1989, 24(3): 281-286. [58] Suzuki K, Ishimoto M, Kikuchi F, et al . Growth inhibitory effect of an alpha-amylase inhibitor from the wild common bean ( Phaseolus vulgaris )resistant to the Mexican bean weevil ( Zabrotes subfasciatus ). Japanese Journal of Breeding, 1993, 43(2): 257-265. [59] Mirkov T E, Wahlstrom J M, Hagiwara K, et al . Evolutionary relationships among proteins in the phytohemagglutin in-arcelin-alpha-amylase inhibitor family of the common bean and its relatives. Plant Molecular Biology, 1994, 26(4): 1103-1113. [60] Grossi de Sa M F, Mirkov T E, Ishimoto M, et al . Molecular characterization of a bean α-amylase inhibitor that inhibits the α-amylase of the Mexican bean weevil Zabrotes subfasciatus . Planta, 1997, 203(3): 295-303. [61] Shade R E, Schroeder H E, Pueyo J J, et al . Transgenic pea seeds expressing the alpha-amylase inhibitor of the common bean are resistant to bruchid beetles. Nature Biotechnology, 1994, 12(8): 793-796. [62] Schroeder H E, Gollasch S, Moore A, et al . Bean alpha-amylase inhibitor confers resistance to the pea weevil ( Bruchus pisorum ) in transgenic peas ( Pisum sativum L.). Plant Physiology, 1995, 107(4): 1233-1239. [63] Lagadic L. Some characteristics of digestive α-glycosidases from adults of Bruchus affinis Frölich, in relation with intestinal pH. Comparative Biochemistry & Physiology Part A Physiology, 1994, 108(2/3): 249-253. [64] Cheng M S, Feng G, Zen K C, et al . α-amylases from three species of stored grain coleoptera and their inhibition by wheat and corn proteinaceous inhibitors. Insect Biochemistry & Molecular Biology, 1992, 22(3): 261-268. [65] Silva C P, Terra W R, Xavier-Filho J, et al . Digestion in larvae of Callosobruchus maculatus and Zabrotes subfasciatus (Coleoptera: Bruchidae) with emphasis on α-amylases and oligosaccharidases. Insect Biochemistry & Molecular Biology, 1999, 29(4): 355-366. [66] Carlson G L, Li B U K, Bass P, et al . A bean alpha-amylase inhibitor formulation (starch blocker) is ineffective in man. Science, 1983, 219: 393-395. [67] Le Berre-Anton V, Bompard-Gilles C, Payan F, et al . Characterization and functional properties of the alpha-amylase inhibitor (alpha-AI) from kidney bean ( Phaseolus vulgaris ) seeds. Biochimica Et Biophysica Acta, 1997, 1343(1): 31-40. [68] Fogel M R, Gray G M. Starch hydrolysis in man: an intraluminal process not requiring membrane digestion. Journal of Applied Physiology, 1973, 35(2): 263-267. [69] Berdnikov V A, Trusov Y A, Bogdanova V S, et al . The neoplastic pod gene ( Np ) may be a factor for resistance to the pest Bruchus pisorum L. Pisum Genetics, 1992, 24: 37-39. [70] Doss R P, Oliver J E, Proebsting W M, et al . Bruchins: insect-derived plant regulators that stimulate neoplasm formation. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97: 6218-6223. [71] Nuttall V W, Lyall L H. Inheritance of neoplastic pod in the pea. Journal of Heredity, 1964, 55(4): 184-186. [72] Dodds K S, Matthews P. Neoplastic pod in the pea. Journal of Heredity, 1966, 57(3): 83-88. [73] Snoad B, Matthews P. Neoplasms of the pea pod. Chromosomes Today, 1969, 2: 126-131. [74] Burgess J, Fleming E N. The structure and development of a genetic tumour of the pea. Protoplasma, 1973, 76(3): 315-325. [75] Doss R P. Treatment of pea pods with Bruchin B results in up-regulation of a gene similar to MtN19. Plant Physiology and Biochemistry, 2005, 43(3): 225-231. [76] Cooper L D, Doss R P, Price R, et al . Application of Bruchin B to pea pods results in the up-regulation of CYP93C18, a putative isoflavone synthase gene, and an increase in the level of pisatin, an isoflavone phytoalexin. Journal of Experimental Botany, 2005, 56: 1229-1237. [77] Lee R Y, Reiner D, Higgins T J V. Effect on alpha-amylase Kinhibitor genetically modified (GM) pea consumption on lung inflammation in a mouse model of allergic asthma. Clinical & Translational Allergy, 2011, 1(Suppl 1): 1. [78] OGTR. The Office of the Gene Technology Regulator[DB/OL]. 2005 [2016-08-08]. http://www. ogtr. gov. au. [79] Hoey B K, Crowe K R, Jones V M, et al . A phylogenetic analysis of Pisum based on morphological characters, and allozyme and RAPD markers. Theoretical and Applied Genetics, 1996, 92(1): 92-100. [80] Blixt S. The Pea[M]//King R C. Handbook of Genetics. New York: Plenum Press, 1974: 181-221. [81] Sousa-Majer de M J, Turner N C, Hardie D C, et al . Response to water deficit and high temperature of transgenic peas ( Pisum sativum L.) containing a seed-specific α-amylase inhibitor and the subsequent effects on pea weevil ( Bruchus pisorum L.) survival. Journal of Experimental Botany, 2004, 55: 497-505. [82] Mihiretu E, Wale M. Effect of harvesting and threshing time and grain fumigation of field peas ( Pisum sativum L.) on pea weevil ( Bruchus pisorum L.) (Coleoptera: Bruchidae) development and damage. Ethiopian Journal of Science & Technology, 2013, 6(1): 13-24. [83] Ratnadass A, Fernandes P, Avelino J, et al . Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agronomy for Sustainable Development, 2012, 32(1): 273-303. [84] Tooker J F, Frank S D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. Journal of Applied Ecology, 2012, 49: 974-985. [85] Doring T F, Knapp S, Kovacs G, et al . Evolutionary plant breeding in cereals-into a new era. Sustainability, 2011, 3: 1944-1971. [86] Zhang Z B, Cao J. Pest Control: Strategies and Methods[M]. Beijing: Science and Technology Press, 1990: 504-562. 张宗炳, 曹骥. 害虫防治: 策略与方法[M]. 北京: 科学技术出版社, 1990: 504-562. [87] Wang Y W, Zhang G Z. Effective control way of the pests. Journal of Anhui Agricultural Sciences, 2003, 31(1): 120-122, 124. 王亚维. 张国洲. 农业害虫农业防治和物理防治方法的研究. 安徽农业科学, 2003, 31(1): 120-122, 124. [88] Zhong W W, Yang X M. Current progress on research of pea weevil. Crops, 2014, 2: 21-25. 仲伟文, 杨晓明. 豌豆象的发生、危害、防治对策及豌豆抗豌豆象的遗传机理综述. 作物杂志, 2014, 2: 21-25. [89] Khan T N, Croser J S. Pea: Overview[M]//Wrigley C, Corke H, Walker C E. Encyclopedia of Grain Science. Amsterdam: Elsevier Press, 2004: 287-295. [90] Annis B, O’Keeffe L E. Influence of pea genotype on parasitization of the pea weevil, Bruchus pisorum (Coleoptera: Bruchidae) by Eupteromalus leguminis (Hymenoptera: Pteromalidae). Environmental Entomology, 1987, 16: 653-655. [91] Hormazabal R L, Gerding P M. Release density of Uscana senex Grese (Hymenoptera: Trichogrammatidae) for control of Bruchus pisorum L. (Coleoptera: Bruchidae). Agro-Ciencia, 1998, 14: 157-161. [92] Pintureau B, Gerding M, Cisternas E. Description of three new species of Trichogrammatidae (Hymenoptera) from Chile. The Canadian Entomologist, 1999, 131(1): 53-63. [93] Wilson F. A review of the biological control of insects and weeds in Australia and Australian. Entomophaga, 1960, 6(1): 76. [94] Bruce T J A, Martin J L, Smart L E, et al . Development of semiochemical attractants for monitoring bean seed beetle, Bruchus rufimanus . Pest Management Science, 2011, 67(10): 1303-1308. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||