Acta Prataculturae Sinica ›› 2017, Vol. 26 ›› Issue (7): 190-200.DOI: 10.11686/cyxb2016430
Previous Articles Next Articles
BAO Ai-Ke*, BAI Tian-Hui, ZHAO Tian-Xuan, SU Jia-Hao
Received:
2016-11-14
Online:
2017-07-20
Published:
2017-07-20
BAO Ai-Ke, BAI Tian-Hui, ZHAO Tian-Xuan, SU Jia-Hao. CRISPR/Cas9: A gene targeting technology and its application in the study of plant genetic function[J]. Acta Prataculturae Sinica, 2017, 26(7): 190-200.
[1] Nadiya O, Anzhela K, Holger P. Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant Journal, 2003, 35(5): 604-612. [2] Mladenov E, Magin S, Soni A, et al . DNA double-strand break repair as determinant of cellular radiosensitivity to killing and target in radiation therapy. Frontiers in Oncology, 2013, 3: 113. [3] Hsu P, Lander E, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6): 1262-1278. [4] Voytas D F. Plant genome engineering with sequence-specific nucleases. Annual Review of Plant Biology, 2013, 64: 327-350. [5] Puchta H, Fauser F. Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant Journal, 2014, 78(5): 727-741. [6] Epinat J C, Arnould S, Chames P, et al . A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Research, 2003, 31(11): 2952-2962. [7] Chevalier B S, Stoddard B L. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Research, 2001, 29(18): 3757-3774. [8] Zhang D B, Shi P, Pang X N. Research progress in engineered nucleases for genome site-specific editing. Basic & Clinical Medicine, 2013, 33(12): 1634-1637. 张殿宝, 施萍, 庞希宁. 人工核酸酶用于基因组定点编辑的研究进展. 基础医学与临床, 2013, 33(12): 1634-1637. [9] Urnov F D, Rebar E J, Holmes M C, et al . Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 2010, 11(9): 636-646. [10] Éva Scheuring Vanamee, Santagata S, Aggarwal A K. FokⅠ requires two specific DNA sites for cleavage. Journal of Molecular Biology, 2001, 309: 69-78. [11] Zeng M H, Jiang M B, Cai L H. Comparison of ZFNs and TALENs in the application of genetic modification. International Journal of Genetics, 2013, 36(6): 257-260. 曾敏慧, 蒋满波, 蔡柳洪. ZFNs和TALENs在基因修饰中的应用比较. 国际遗传学杂志, 2013, 36(6): 257-260. [12] Ramirez C L, Foley J E, Wright D A, et al . Unexpected failure rates for modular assembly of engineered zinc fingers. Nature Methods, 2008, 5(5): 374-375. [13] He L X Z, Chen H D, Xiao L. Molecular “scissors”—TALENs mediated site—specific gene. Chinese Journal of Cell Biology, 2013, 35(8): 1205-1210. 何丽夏子, 陈海德, 肖磊. 分子“剪刀”——TALENs介导的定点基因修饰技术. 中国细胞生物学学报, 2013, 35(8): 1205-1210. [14] Bogdanove A J, Voytas D F. TAL effectors: customizable proteins for DNA targeting. Science, 2011, 333(6051): 1843-1846. [15] Mussolino C, Cathomen T. RNA guides genome engineering. Nature Biotechnology, 2013, 31(3): 208-209. [16] Ishino Y, Shinagawa H, Makino K, et al . Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli , and identification of the gene product. Journal of Bacteriology, 1987, 169(12): 5429-5433. [17] Mojica V C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria (letter). Molecular Microbiology, 2000, 36(1): 244-246. [18] Jansen R, Embden J D A V, Gaastra W, et al . Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 2002, 43(6): 1565-1575. [19] Gupta S K, John S, Naik R, et al . A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. Plos Computational Biology, 2005, 1(6): e60. [20] Makarova K S, Haft D H, Barrangou R, et al . Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 2011, 9(6): 467-477. [21] Mojica F J M, Chcsar Díez-Villaseñor, García-Martínez J, et al . Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 2005, 60(2): 174-182. [22] Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 2005, 151(3): 653-663. [23] Bolotin A, Quinquis B, Sorokin A, et al . Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 2005, 151: 2551-2561. [24] Barrangou R, Fremaux C, Deveau H, et al . CRISPR provides acquired resistance against viruses in prokaryotes. Science, 2007, 315(5819): 1709-1712. [25] Jinek M, Chylinski K, Fonfara I, et al . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816-821. [26] Mandal P, Ferreira L M R, Collins R, et al . Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell, 2014, 15(5): 643-652. [27] Chen X, Xu F, Zhu C, et al . Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans . Scientific Reports, 2014, 4: 7581. [28] Auer T O, Duroure K, Concordet J P, et al . CRISPR/Cas9-mediated conversion of eGFP- into Gal4-transgenic lines in zebrafish. Nature Protocols, 2014, 9(12): 2823-2840. [29] Zhu S, Rong Z, Lu X, et al . Gene targeting through homologous recombination in monkey embryonic stem cells using CRISPR/Cas9 system. Stem Cells & Development, 2015, 24(10): 1147-1149. [30] Seeger C, Ji A S. Targeting hepatitis B virus with CRISPR/Cas9. Molecular Therapy Nucleic Acids, 2014, 3: e216. [31] Yuen K S, Chan C P, Wong N H, et al . CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. Journal of General Virology, 2015, 96: 626-636. [32] Osborn M J, Gabriel R, Webber B R, et al . Fanconi anemia gene editing by the CRISPR/Cas9 system. Human Gene Therapy, 2015, 26(2): 114-126. [33] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8: 172. [34] Karginov F V, Hannon G J. The CRISPR system: small RNA-guided defense in bacteria and archaea. Molecular Cell, 2010, 37(1): 7-19. [35] Feng Z, Zhang B, Ding W, et al . Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 2013, 23(10): 1229-1232. [36] Wei C, Liu J, Yu Z, et al . TALEN or Cas9-rapid, efficient and specific choices for genome modifications. Journal of Genetics & Genomics, 2013, 40(6): 281-289. [37] Li J, Zhang Y, Chen K L, et al . CRISPR/Cas: a novel way of RNA-guided genome editing. Hereditas, 2013, 35(11): 1265-1273. 李君, 张毅, 陈坤玲, 等. CRISPR/Cas系统: RNA靶向的基因组定向编辑新技术. 遗传, 2013, 35(11): 1265-1273. [38] Wang T, Birsoy K, Hughes N W, et al . Identification and characterization of essential genes in the human genome. Science, 2015, 350(6264): 1096-1101. [39] Lillestøl R K, Redder P, Garrett R A, et al . A putative viral defence mechanism in archaeal cells. Archaea, 2006, 2(1): 59-72. [40] Deltcheva E, Chylinski K, Sharma C M, et al . CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471(7340): 602-607. [41] Li T M, Du B. CRISPR-Cas system and coevolution of bacteria and phages. Hereditas, 2011, 33(3): 213-218. 李铁民, 杜波. CRISPR-Cas系统与细菌和噬菌体的共进化. 遗传, 2011, 33(3): 213-218. [42] Mojica F J M, Díezvillaseñor C, Garcíamartínez J, et al . Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009, 155(3): 733-740. [43] Sternberg S H, Redding S, Jinek M, et al . DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature, 2014, 507(7490): 62-67. [44] Jinek M, Jiang F, Taylor D W, et al . Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 2014, 343(6176): 1247997. [45] Nishimasu H, Ran F A, Hsu P, et al . Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell, 2014, 156(5): 935-949. [46] Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics, 2011, 45: 273-297. [47] Beloglazova N, Brown G, Zimmerman M D, et al . A novel family of sequence-specific endoribonucleases associated with the clustered regularly interspaced short palindromic repeats. Journal of Biological Chemistry, 2008, 283(29): 20361-20371. [48] Pougach K, Semenova E E, Datsenko K A, et al . Transcription, processing and function of CRISPR cassettes in Escherichia coli . Molecular Microbiology, 2010, 77(6): 1367-1379. [49] Brouns S J J, Jore M M, Lundgren M, et al . Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891): 960-964. [50] Garneau J E, Dupuis M É, Villion M, et al . The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468(7320): 67-71. [51] Cong L, Ran F A, Cox D, et al . Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819-823. [52] Mali P, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823-826. [53] Xu R, Li H, Qin R, et al . Gene targeting using the Agrobacterium tumefaciens -mediated CRISPR-Cas system in rice. Rice(N Y), 2014, 7(1): 5. [54] Li J F, Norville J E, Aach J, et al . Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 2013, 31(8): 688-691. [55] Nekrasov V, Staskawicz B, Weigel D, et al . Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 2013, 31(8): 691-693. [56] Shan Q, Wang Y, Li J, et al . Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 2013, 31(8): 686-688. [57] Mao Y, Zhang H, Xu N, et al . Application of the CRISPR-Cas system for efficient genome engineering in plants. Molecular Plant, 2013, 6(6): 2008-2011. [58] Upadhyay S K, Kumar J, Alok A, et al . RNA-guided genome editing for target gene mutations in wheat. G3-Genes Genomes Genetics, 2013, 3(12): 2233-2238. [59] Zhang H, Zhang J, Wei P, et al . The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnology Journal, 2014, 12: 797-807. [60] Kabin, Yinong, Yang. RNA-Guided genome editing in plants using a CRISPR-Cas system. Molecular Plant, 2013, 6(6): 1975-1983. [61] Belhaj K, Chaparro-Garcia A, Kamoun S, et al . Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods, 2013, 9(1): 39. [62] Yin K, Han T, Liu G, et al . A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Scientific Reports, 2015, 5: 14926. [63] Jiang W, Zhou H, Bi H, et al . Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis , tobacco, sorghum and rice. Nucleic Acids Research, 2013, 41(20): e188. [64] Jia H, Wang N. Targeted genome editing of sweet orange using Cas9/sgRNA. Plos One, 2014, 9(4): e93806. [65] Fan D, Liu T, Li C, et al . Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Scientific Reports, 2015, 5: 12217. [66] Meng Y, Hou Y, Wang H, et al . Targeted mutagenesis by CRISPR/Cas9 system in the model legume Medicago truncatula . Plant Cell Reports, 2017, 36(2): 371-374. [67] Lozano-Juste J, Cutler S R. Plant genome engineering in full bloom. Trends in Plant Science, 2014, 19(5): 284-287. [68] Qi L S, Larson M H, Gilbert L A, et al . Repurposing CRISPR as an RNA-Guided platform for sequence-specific control of gene expression. Cell, 2013, 152(5): 1173-1183. [69] Zhang D W, Zhang C F, Dong F, et al . Application of CRISPR/Cas9 system in breeding of new antiviral plant germplasm. Hereditas, 2016, 38(9): 811-820. 张道微, 张超凡, 董芳, 等. CRISPR/Cas9系统在培育抗病毒植物新种质中的应用. 遗传, 2016, 38(9): 811-820. [70] Ji X, Zhang H, Zhang Y, et al . Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nature Plants, 2015, 1(10): 15144. [71] Baltes N J, Hummel A W, Konecna E, et al . Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nature Plants, 2015, 1(10): 15145. [72] Zhang Y, Liang Z, Zong Y, et al . Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nature Communications, 2016, 7: 12617. [73] Wiles M V, Qin W, Cheng A W, et al . CRISPR-Cas9-mediated genome editing and guide RNA. Mammalian Genome, 2015, 26(9/10): 501-510. [74] Fu Y, Foden J A, Khayter C, et al . High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822-826. [75] Hsu P D, Scott D A, Weinstein J A, et al . DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013, 31(9): 827-832. [76] Fu Y, Sander J D, Reyon D, et al . Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32(3): 279-284. [77] Ran F A, Hsu P, Lin C Y, et al . Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 154(6): 1380-1389. [78] Shen B, Zhang W, Zhang J, et al . Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nature Methods, 2014, 11(4): 399-402. [79] Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 2014, 32(6): 577-582. [80] Tsai S Q, Wyvekens N, Khayter C, et al . Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology, 2014, 32(6): 569-576. [81] Miao J, Guo D, Zhang J, et al . Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 2013, 23(10): 1233-1236. [82] Brooks C, Nekrasov V, Lippman Z B, et al . Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiology, 2014, 166(3): 1292-1297. [83] Sugano S S, Shirakawa M, Takagi J, et al . CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L. Plant & Cell Physiology, 2014, 55(3): 475-481. [84] Zhou H, Bo L, Weeks D P, et al . Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Research, 2014, 42(17): 10903-10914. [85] Jacobs T B, Lafayette P R, Schmitz R J, et al . Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnology, 2015, 15: 16. [86] Schiml S, Fauser F, Puchta H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant Journal, 2014, 80(6): 1139-1150. [87] Xing H L, Dong L, Wang Z P, et al . A CRISPR/Cas9 toolkit for multiplex genome editing in plants. BMC Plant Biology, 2014, 14: 327. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||