Welcome to Acta Prataculturae Sinica ! Today is Share:

Acta Prataculturae Sinica ›› 2017, Vol. 26 ›› Issue (9): 167-175.DOI: 10.11686/cyxb2016478

Previous Articles     Next Articles

Effects of homo- and hetero-fermentative lactic acid bacteria on the fermentation characteristics, nutritional quality, and aerobic stability of whole corn silage

MIAO Fang1, ZHANG Fan-Fan1, TANG Kai-Ting1, JIA Shu-An1,2, WANG Xu-Zhe1, MA Chun-Hui1,*   

  1. 1.College of Animal Science & Technology, Shihezi University, Shihezi 832000, China;
    2.Institute of Animal Health Supervision of Xinjiang, Urumqi 830011, China
  • Received:2016-12-13 Revised:2017-03-13 Online:2017-09-20 Published:2017-09-20

Abstract: The overall aim of our research was to improve the fermentation characteristics, nutritional quality, and aerobic stability of whole-corn silage. We investigated the effects of homo- and hetero-lactic acid bacteria on the fermentation characteristics, nutritional value, and microorganism content of whole-corn silage. Lactic acid bacteria were added to whole corn plants and sealed in a vacuum bag. The control (CK) had no added inoculant. The T group contained Lactobacillus plantarum+Pediococcus acidilactici at 1∶1, 1×105 cfu/g; the Y group contained Lactobacillus buchneri at 4×105 cfu/g; and the T+Y group contained all of these homo- and heterofermentative lactic acid bacteria. The following indexes were analyzed to evaluate fermentation: nutritional quality, microbial content on the 60th day of fermentation, microbial content, and CO2 gas production on the 5th day after opening the bag. The treatments were ranked as follows: pH, T+Y>T>CK>Y (P=0.001); lactic acid content, T+Y>Y>T>CK (P=0.095); ammonium nitrogen content, T+Y>Y>T>CK (P=0.011); number of yeasts, T+Y>T>Y>CK (P=0.023); number of molds, T+Y>T>Y>CK (P=0.028); dry matter content, T+Y>T>Y>CK (P=0.020); water soluble carbohydrates content, CK>T+Y>Y>T (P=0.190); neutral detergent fiber content, Y>CK>T+Y>T (P=0.001); acid detergent fiber content, CK>T>Y>T+Y (P=0.730); crude ash content, T+Y>T>Y>CK (P=0.030). There was no significant difference among treatments in crude protein content, acid detergent lignin content, starch content, crude fat content, and the number of aerobic bacteria and lactic acid bacteria (P>0.05). On the 5th day after opening the bag, the treatments were ranked as follows: pH, T+Y>T>CK>Y (P=0.001); CO2 production, CK>T>Y>T+Y (P=0.007); mold count, T+Y>Y>T>CK (P=0.001); aerobic stability, Y>T+Y>CK>T (P=0.021). On the 5th day after opening the bag, there was no significant difference among the treatments in the number of aerobic bacteria, lactic acid bacteria, and yeasts (P>0.05). The comprehensive values of the four treatments, as calculated from the 16 indexes by a membership function analysis, were as follows: Y (0.652)>T+Y (0.528)>CK (0.492)>T (0.441).