[1] Editorial Board of Flora of China of the Chinese Academy of Sciences. Flora of China (Vol.42). Beijing: Science Press, 1998: 318-320.
中国科学院中国植物志编辑委员会. 中国植物志(第42卷). 北京: 科学出版社, 1998: 318-320.
[2] Ning H M. Studies of identification and evaluation on 6 wild Medicago ruthenica germplasm resources. Hohhot: Inner Mongolia Agricultural University, 2008: 6-7.
宁红梅. 6份野生扁蓿豆种质资源鉴定与评价研究. 呼和浩特: 内蒙古农业大学, 2008: 6-7.
[3] Shi W G, Wang Z L, Du J C, et al. Evaluation the salt tolerance of Melilotoides ruthenica strains in the germination period. Chinese Journal of Grassland, 2008, 30(1): 40-44.
史万光, 王照兰, 杜建材, 等. 扁蓿豆不同品系种子发芽期耐盐性鉴定. 中国草地学报, 2008, 30(1): 40-44.
[4] Yang Y P, Cai L Y, Li Z Y, et al. Effects of NaCl stress on the electric conductivity and fluorescence parameters of Medicago ruthenica. Acta Agrestia Sinica, 2013, 21(5): 913-920.
杨玉平, 蔡丽艳, 李志勇, 等. NaCl胁迫对扁蓿豆叶片膜透性和叶绿素荧光特性的影响. 草地学报, 2013, 21(5): 913-920.
[5] Yao J, Liu X B, Guo M S, et al. Effects of different NaCl concentrations on the growth and physiological indices of Melilotoides ruthenica seedling. Acta Agrestia Sinica, 2014, 22(3): 564-571.
姚佳, 刘信宝, 郭米山, 等. 不同浓度NaCl胁迫对扁蓿豆苗期生长及生理指标的影响. 草地学报, 2014, 22(3): 564-571.
[6] Yu J, Mi F G, Li H Y, et al. Evaluation of salt resistance of five Medicago ruthenica accessions during seed germination. Chinese Journal of Grassland, 2014, 36(5): 71-75.
于洁, 米福贵, 李鸿雁, 等. 五份扁蓿豆种质材料种子萌发期耐盐性鉴定. 中国草地学报, 2014, 36(5): 71-75.
[7] Zhang J W, Xu C L, Yu X J, et al. Salt resistance of nine wild Medicago ruthenica accessions during seed germination stages. Chinese Journal of Grassland, 2014, 36(5): 83-88.
张建文, 徐长林, 鱼小军, 等. 九份扁蓿豆种子萌发期耐盐性研究. 中国草地学报, 2014, 36(5): 83-88.
[8] Yu X J, Xiao H, Xu C L, et al. Comparative study on drought resistance and salt tolerance of Medicago ruthenica and Medicago varia at seed germination period. Journal of Plant Genetic Resources, 2015, 16(2): 405-410.
鱼小军, 肖红, 徐长林, 等. 扁蓿豆和苜蓿种子萌发期抗旱性和耐盐性比较. 植物遗传资源学报, 2015, 16(2): 405-410.
[9] Yu J, Jia Z Y, Huang F, et al. Comparative study on salt resistance of five different Medicago ruthenica at seeding stage. Acta Agrestia Sinica, 2016, 24(2): 459-462.
于洁, 贾振宇, 黄帆, 等. 5份不同来源扁蓿豆幼苗期的耐盐性比较. 草地学报, 2016, 24(2): 459-462.
[10] Zhao G L, Chen Q, Hu G X, et al. Responses of the key enzymes involved in proline metabolism in rice seedling under water stress. Agricultural Research in the Arid Areas, 2011, 29(3): 80-83.
赵贵林, 陈强, 胡国霞, 等. 水稻脯氨酸代谢关键酶对水分胁迫的响应. 干旱地区农业研究, 2011, 29(3): 80-83.
[11] Ku H M, Hu C C, Chang H J, et al. Analysis by virus induced gene silencing of the expression of two proline biosynthetic pathway genes in Nicotiana benthamiana under stress conditions. Plant Physiology Biochemistry, 2011, 49(10): 1147-1154.
[12] Wang K, Liu Y X, Dong J, et al. Effects of NaCl stress on proline accumulation and metabolic pathways of chicory (Cichorium intybus L.) seedlings. Acta Agrestia Sinica, 2011, 19(1): 102-106.
王康, 刘艳香, 董洁, 等. 盐胁迫对菊苣幼苗脯氨酸积累及其代谢途径的影响. 草地学报, 2011, 19(1): 102-106.
[13] Zou Q. Plant physiology experiment instruction. Beijing: China Agriculture Press, 2005: 161-162.
邹琦. 植物生理学实验指导. 北京: 中国农业出版社, 2005: 161-162.
[14] Kishor P, Hong Z, Miao G H, et al. Overexpression of 1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology, 1995, 108(4): 1387-1394.
[15] Garcia-Rios M, Fujita T, Larosa P C, et al. Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase.Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(15): 8249-8254.
[16] Roosens N H C J, Thu T T. Isolation of theomithine-δ-aminotransferase cDNA and effect of salt stress on its expression in Arabidopsis thaliana. Plant Physiology, 1998, 117: 263-271.
[17] Kim H R, Rho H W, Park J W, et al. Assay of ornithine aminotransferase with ninhydrin. Analytical Biochemistry, 1994, 223(2): 205.
[18] Lutts S, Kinet J M, Bouharnlont J. NaCl-induced senescence in leaves of rice cultivars differing in salinity resistance. Annals of Botany, 1996, 78(3): 389-398.
[19] Jaleel C A, Gopi R, Sankar B, et al. Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in catharanthus roseus seedlings under salt stress. South African Journal of Botany, 2007, 73(2): 190-195.
[20] Lu Y, Lei J Q, Zeng F J, et al. Effects of salt treatments on the growth and ecophysiological characteristics of Haloxylon ammodendron. Acta Prataculturae Sinica, 2014, 23(3): 152-159.
鲁艳, 雷加强, 曾凡江, 等. NaCl处理对梭梭生长及生理生态特征的影响. 草业学报, 2014, 23(3): 152-159.
[21] Yu C, Wang J H, Xue F, et al. Morphological and physiological response of Hippophae rhamnoides on alkaline salt stress. Journal of Central South University of Forestry & Technology, 2014, 34(9): 70-75.
于畅, 王竞红, 薛菲, 等. 沙棘对碱性盐胁迫的形态和生理响应. 中南林业科技大学学报, 2014, 34(9): 70-75.
[22] Kavi K P B, Sangam S, Amrutha R N, et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science, 2005, 54(4): 424-438.
[23] Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, et al. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell, 1996, 8(8): 1323-1335.
[24] Sun C C, Zhao H Y, Zheng C X. Effects of NaCl stress on osmolyte and proline metabolism in Ginkgo biloba seedling. Plant Physiology Journal, 2017, 53(3): 470-476.
孙聪聪, 赵海燕, 郑彩霞. NaCl胁迫对银杏幼树渗透调节物质及脯氨酸代谢的影响. 植物生理学报, 2017, 53(3): 470-476.
[25] Dong Q L, Xia F S, Dong K H. Effects of NaCl stress on proline metabolism of Achnatherum splendens seedling. Acta Prataculturae Sinica, 2010, 19(5): 71-76.
董秋丽, 夏方山, 董宽虎. NaCl胁迫对芨芨草苗期脯氨酸代谢的影响. 草业学报, 2010, 19(5): 71-76.
[26] Zhen W B, Ma Q H. Proline metabolism in response to salt stress in common reed [Phragmites australis (Cav.) Trin.ex Steud]. Botanica Marina, 2009, 52: 307-315.
[27] Zhao F G, Liu Y L, Zhang W H. Proline metabolism in the leaves of barley seedlings and its relation to salt tolerance. Journal of Nanjing Agricultural University, 2002, 25(2): 7-10.
赵福庚, 刘友良, 章文华. 大麦幼苗叶片脯氨酸代谢及其与耐盐性的关系. 南京农业大学学报, 2002, 25(2): 7-10.
[28] Liu J X, Wang J C, Liu X L. Effects of salt-alkaline mixed stress on proline and polyamine metabolism in leaves of naked oat seedlings. Chinese Journal of Ecology, 2016, 35(11): 2974-2982.
刘建新, 王金成, 刘秀丽. 盐碱混合胁迫对裸燕麦幼苗叶片脯氨酸和多胺代谢的影响. 生态学杂志, 2016, 35(11): 2974-2982.
[29] Xia F S, Dong Q L, Dong K H. Effect of alkaline salts on proline metabolism of Saussurea runcinata at seedling stage. Chinese Journal of Grassland, 2011, 33(1): 48-53.
夏方山, 董秋丽, 董宽虎. 碱性盐胁迫对碱地风毛菊苗期脯氨酸代谢途径的影响. 中国草地学报, 2011, 33(1): 48-53. |