[1] Wakeel A, Farooq M, Qadir M, et al. Potassium substitution by sodium in plants. Critical Reviews in Plant Sciences, 2011, 30(4): 401-413. [2] Gierth M, Mäser P.Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis. Febs Letters, 2007, 581(12): 2348-2356. [3] Lebaudy A, Véry A A, Sentenac H.K+ channel activity in plants: Genes, regulations and functions. Febs Letters, 2007, 581(12): 2357-2366. [4] Sentenac H, Bonneaud N.Cloning and expression in yeast of a plant potassium ion transport system. Science, 1992, 256: 663-665. [5] Hartje S, Zimmermann S, Klonus D, et al. Functional characterisation of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression in Xenopus oocytes. Planta, 2000, 210(5): 723-731. [6] Golldack D, Quigley F, Michalowski C B, et al. Salinity stress-tolerant and-sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Molecular Biology, 2003, 51(1): 71-81. [7] Boscari A, Clément M, Volkov V, et al. Potassium channels in barley: Cloning, functional characterization and expression analyses in relation to leaf growth and development. Plant, Cell & Environment, 2009, 32(12): 1761-1777. [8] Xu J, Tian X, Eneji A E, et al. Functional characterization of GhAKT1, a novel Shaker-like K+, channel gene involved in K+, uptake from cotton (Gossypium hirsutum). Gene, 2014, 545(1): 61-71. [9] Véry A A, Sentenac H.Molecular mechanisms and regulation of K+ transport in higher plants. Annual Review of Plant Biology, 2003, 54(1): 575-603. [10] Gambale F, Uozumi N.Properties of shaker-type potassium channels in higher plants. Journal of Membrane Science, 2006, 210(1): 1-19. [11] Nieves-Cordones M, Gaillard I.Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: Comparison with animal HCN and Kv channels. Plant Signaling and Behavior, 2014, 9(10): e972892. [12] Wu G Q, Shui Q Z, Feng R J.Research advance of K+ channel AKT1 in plants. Bulletin of Botany, 2017, 52(2): 225-234. 伍国强, 水清照, 冯瑞军. 植物K+通道AKT1的研究进展. 植物学报, 2017, 52(2): 225-234. [13] Moshelion M, Becker D, Czempinski K, et al. Diurnal and circadian regulation of putative potassium channels in a leaf moving organ. Plant Physiology, 2002, 128: 634-642. [14] Pratelli R, Lacombe B, Gaymard F, et al. A grapevine gene encoding a guard cell K+ channel displays developmental regulation in the grapevine berry. Plant Physiology, 2002, 128(2): 564-577. [15] Basset M, Conejero G, Lepetit M, et al. Organization and expression of the gene coding for the potassium transport system AKT1 of Arabidopsis thaliana. Plant Molecular Biology, 1995, 29(5): 947-958. [16] Liam D, Julia D.Cell expansion in roots. Current Opinion in Plant Biology, 2004, 7(1): 33-39. [17] Li L, Kim B G, Yong H C, et al. A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis. Proceedings of the National Academy of Sciences, 2006, 103(33): 12625-12630. [18] Xu J, Li H D, Chen L Q, et al. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 2006, 125(7): 1347-1360. [19] Geiger D, Becker D, Vosloh D, et al. Heteromeric AtKC1·AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions. Journal of Biological Chemistry, 2009, 284(32): 21288-21295. [20] Wang Y, He L, Li H D, et al. Potassium channel alpha-subunit AtKC1 negatively regulates AKT1-mediated K+ uptake in Arabidopsis roots under low-K+ stress. Cell Research, 2010, 20(7): 826-837. [21] Pilot G, Lacombe B, Gaymard F, et al. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. Journal of Biological Chemistry, 2001, 276(5): 3215-3221. [22] Pilot G, Gaymard F, Mouline K, et al. Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Molecular Biology, 2003, 51(5): 773-787. [23] Qi Z, Spalding E P.Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiology, 2004, 136(3): 2548-2555. [24] Nieves-Cordones M, Alemán F, Martínez V, et al. The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Molecular Plant, 2010, 3(2): 326-333. [25] Nieves-Cordones M, Caballero F, Martínez V, et al. Disruption of the Arabidopsis thaliana inward-rectifier K+ channel AKT1 improves plant responses to water stress. Plant and Cell Physiology, 2012, 53(2): 423-432. [26] Xia Z R, Wang P D, Jia W, et al. Effect of K+ on the growth, ion absorption and distribution of Apocynum venetum under salt stress. Pratacultural Science, 2014, 31(11): 2088-2094. 夏曾润, 王沛东, 贾文, 等. K+对盐胁迫下罗布麻生长及离子吸收分配的效应. 草业科学, 2014, 31(11): 2088-2094. [27] Cui Y N, Xia Z R, Ma Q, et al. The synergistic effects of sodium and potassium on the xerophyte Apocynum venetum in response to drought stress. Plant Physiology and Biochemistry, 2019, 135(2): 489-498. [28] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25(4): 402-408. [29] Jin Y R, Liu H B, Song Y F, et al. Progress of Shaker-like potassium channel family in plants. Molecular Plant Breeding, 2012, 10(1): 1360-1368. 靳义荣, 刘好宝, 宋毓峰, 等. 植物Shaker家族钾离子通道研究进展. 分子植物育种, 2012, 10(1): 1360-1368. [30] Wang Y, Wu W H.Molecular genetic mechanism of high efficient potassium uptake in plants. Bulletin of Botany, 2009, 44(1): 27-36. 王毅, 武维华. 植物钾营养高效分子遗传机制. 植物学报, 2009, 44(1): 27-36. [31] Zhang H C, Yin W L, Xia X L.Shaker-like potassium channels in Populus, regulated by the CBL-CIPK signal transduction pathway, increase tolerance to low-K stress. Plant Cell Reports, 2010, 29(9): 1007-1012. [32] Pilot G, Pratelli R, Gaymard F, et al. Five-group distribution of the Shaker-like K+ channel family in higher plants. Journal of Molecular Evolution, 2003, 56(4): 418-434. [33] Alemán F, Nievescordones M, Martínez V, et al. Root K+ acquisition in plants: The Arabidopsis thaliana model. Plant and Cell Physiology, 2011, 52(9): 1603-1612. [34] Wang Y, Wu W H.Potassium transport and signaling in higher plants. Annual Review of Plant Biology, 2013, 64(1): 451-476. [35] Ahmad I, Mian A, Maathuis F J M. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. Journal of Experimental Botany, 2016, 67(9): 2689-2698. [36] Ardie S W, Liu S, Takano T.Expression of the AKT1-type K+, channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Reports, 2010, 29(8): 865-874. [37] Duan H R, Ma Q, Zhang J L, et al. The inward-rectifying K+ channel SsAKT1 is a candidate involved in K+ uptake in the halophyte Suaeda salsa under saline condition. Plant and Soil, 2015, 395(1/2): 173-187. [38] Ma Q, Hu J, Zhou X R, et al. ZxAKT1 is essential for K+ uptake and K+/Na+ homeostasis in the succulent xerophyte Zygophyllum xanthoxylum. The Plant Journal, 2017, 90(1): 48-60. |