[1] Harmer, Stacey L. The circadian system in higher plants. Annual Review of Plant Biology, 2009, 60(1): 357-377. [2] Michael T P, McClung C R. Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiology, 2003, 132: 629-639. [3] Covington M F, Maloof J N, Straume M, et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology, 2008, 9(8): https://doi.org/10.1186/gb-2008-9-8-r130. [4] Akhtar R A, Reddy A B, Maywood E S, et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Current Biology, 2002, 12(7): 540-550. [5] Dodd A N. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science, 2005, 309: 630-633. [6] Goodspeed D, Chehab E W, Min-Venditti A, et al. From the cover: Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(12): 4674-4677. [7] Green R M, Tingay S, Wang Z Y, et al. Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiology, 2002, 129: 576-584. [8] Ruts T, Matsubara S, Wiese-Klinkenberg A, et al. Aberrant temporal growth pattern and morphology of root and shoot caused by a defective circadian clock in Arabidopsis thaliana. The Plant Journal, 2012, 72(1): 154-161. [9] Yerushalmi S, Yakir E, Green R M. Circadian clocks and adaptation in Arabidopsis. Molecular Ecology, 2011, 20(6): 1155-1165. [10] Hsu P Y, Harmer S L. Wheels within wheels: The plant circadian system. Trends in Plant Science, 2014, 19: 240-249. [11] Alabadi D, Yanovsky M J, Más P, et al. Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis. Current Biology, 2002, 12(9): 757-761. [12] Schaffer R, Ramsay N, Samach A, et al. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell, 1998, 93: 1219-1229. [13] Wang Z Y, Tobin E M. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell, 1998, 93: 1207-1217. [14] Schaffer R, Landgraf J, Accerbi M, et al. Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis. The Plant Cell, 2001, 13(1): 113-123. [15] Alabadi D. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science, 2001, 293: 880-883. [16] Farinas B, Mas P. Functional implication of the MYB transcription factor RVE8/LCL5 in the circadian control of histone acetylation. The Plant Journal, 2011, 66(2): 318-329. [17] Reetika R, Nozomu T, Yingshan H P, et al. REVEILLE8 and PSEUDO-REPONSE REGULATOR5 form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genetics, 2011, 7(3): e1001350. [18] Gong W, Hea K, Covington M F, et al. The development of protein microarrays and their applications in DNA-protein and protein-protein interaction analyses of Arabidopsis transcription factors. Molecular Plant, 2008, 1(1): 27-41. [19] Green R M, Tobin E M. Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(7): 4176-4179. [20] Feng Y, Xu Y, Chu W, et al. The spatiotemporal expression patterns of vernalization related genes in wheat. Molecular Plant Breeding, 2017, 15(10): 3886-3892. 冯岳, 徐尧, 褚蔚, 等. 小麦春化作用相关基因的时空表达特性研究. 分子植物育种, 2017, 15(10): 3886-3892. [21] Wu T, Lan Z Q. Comparison and analysis of methods of extracting total RNA from petals of Camellia sasanqua. Chinese Agricultural Science Bulletin, 2013, 29(28): 129-133. 吴田, 蓝增全. 茶梅花瓣总RNA提取方法的比较和分析. 中国农学通报, 2013, 29(28): 129-133. [22] Sparkes I A, Runions J, Kearns A, et al. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nature Protocols, 2006, 1(4): 2019-2025. [23] Feng P P, Chen P, Hong W J, et al. Research progress of MYB transcription factor family in Arabidopsis thaliana. Life Science Research, 2016, 20(6): 555-560. 冯盼盼, 陈鹏, 洪文杰, 等. 拟南芥MYB转录因子家族研究进展. 生命科学研究, 2016, 20(6): 555-560. [24] Chen S K. Transcriptome analysis under heat stress and genome-wide analysis of MYB gene family of a wheat relative species, Brachypodium distachyon. Yangling: Northwest A&F University, 2018. 陈守坤. 小麦亲缘物种二穗短柄草热胁迫下转录组分析和MYB基因家族分析. 杨凌: 西北农林科技大学, 2018. [25] Liu Y. Cloning and analysis of an MYB transcription factor involved in regulation anthocyanin production in apricot fruit. Chongqing: Southwest University, 2018. 刘羽. 调控杏果实花色素苷合成MYB转录因子的克隆及表达分析. 重庆: 西南大学, 2018. [26] Zhang Z S, Wang T K, Qiu M D, et al. Cloning and transcriptional activation verification of rice gene OsZ314. Molecular Plant Breeding, (2019-11-27) [2019-12-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20191127.0939.004.html. 张志槊, 王天抗, 邱牡丹, 等. 水稻OsZ314基因克隆及转录激活验证. 分子植物育种, (2019-11-27) [2019-12-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20191127.0939.004.html. [27] Gould P D, Locke J C W, Larue C, et al. The molecular basis of temperature compensation in the Arabidopsis circadian clock. The Plant Cell Online, 2006, 18(5): 1177-1187. [28] Pérez-García P, Pablo, Ma Y, et al. Time-dependent sequestration of RVE8 by LNK proteins shapes the diurnal oscillation of anthocyanin biosynthesis. Proceedings of the National Academy of Sciences, 2015, 112(16): 5249-5253. [29] Farinas B, Mas P. Histone acetylation and the circadian clock: A role for the MYB transcription factor RVE8/LCL5. Plant Signaling & Behavior, 2011, 6(4): 541-543. |