[1] Kielbowiczmatuk A. Involvement of plant C2H2-type zinc finger transcription factors in stress responses. Plant Science, 2012, 185/186: 78-85. [2] John H L, Brian M L, Peter E W.Zinc finger proteins: New insights into structural and functional diversity. Current Opinion in Structural Biology, 2001, 11: 39-46. [3] Huang J, Yang X, Wang M M, et al. A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochimica et Biophysica Acta-Gene Structure and Expression, 2007, 1769(4): 220-227. [4] Yin M Z, Wang Y P, Zhang L H, et al. The Arabidopsis Cys2/His2 zinc finger transcription factor ZAT18 is a positive regulator of plant tolerance to drought stress. Journal of Experimental Botany, 2017, 68(11): 2991-3005. [5] Mittler R, Kim Y, Song L, et al. Gain- and loss-of-function mutations in Zat10 enhance the tolerance of plants to abiotic stress. Federation of European Biochemical Societies, 2006, 580(28/29): 6537-6542. [6] Ciftci-Yilmaz S, Morsy M R, Song L, et al. The EAR-motif of the Cys2/His2-type zinc finger protein Zat7 plays a key role in the defense response of Arabidopsis to salinity stress. Journal of Biological Chemistry, 2007, 282(12): 9260-9268. [7] Luo X, Bai X, Zhu D, et al. GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta, 2012, 235(6): 1141-1155. [8] Zhang D Y, Tong J F, Xu Z L, et al. Soybean C2H2-type zinc finger protein GmZFP3 with conserved QALGGH motif negatively regulates drought responses in transgenic Arabidopsis. Frontiers in Plant Science, 2016, 7: 325. [9] Yin M Z.Study on the mechanism of Arabidopsis thaliana zinc finger protein ZAT18 in response to drought stress. Wuhan: Wuhan Botanical Garden, Chinese Academy of Sciences, 2017. 殷明珠. 拟南芥锌指蛋白ZAT18参与响应干旱胁迫机制的研究. 武汉: 中国科学院武汉植物园, 2017. [10] Shi H T, Ye T T, Chan Z L.Comparative proteomic and physiological analyses reveal the protective effect of exogenous polyamines in the bermudagrass (Cynodon dactylon) response to salt and drought stresses. Journal of Proteome Research, 2013, 12(11): 4951-4964. [11] Teng K, Tan P H, Xiao G Z, et al. Heterologous expression of a novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene, ZjGRP, caused salt sensitivity in Arabidopsis. Plant Cell Reports, 2017, 36(1): 179-191. [12] Guo H L, Ding W W, Chen J B, et al. Genetic linkage map construction and QTL mapping of salt tolerance traits in Zoysia grass (Zoysia japonica). Plos One, 2014, 9(9): e107249. [13] Xu L X, Zhang M L, Zhang X Z, et al. Cold acclimation treatment-induced changes in abscisic acid, cytokinin, and antioxidant metabolism in Zoysiagrass (Zoysia japonica). Hortscience, 2015, 50(7): 1075-1080. [14] Tan P H, Yuan L L, Fan B, et al. Functional analysis of the stay-green gene ZjSGR from Zoysia japonica using transgenic Nicotiana tabacum. Acta Prataculturae Sinica, 2017, 26(5): 155-162. 檀鹏辉, 袁丽丽, 樊波, 等. 日本结缕草滞绿基因ZjSGR对烟草的转化及功能分析. 草业学报, 2017, 26(5): 155-162. [15] Zhang L, Teng K, Xiao G Z, et al. Transformation of ZjADH gene into Arabidopsis thaliana and cold-tolerance analysis of transgenic plants. Acta Prataculturae Sinica, 2016, 25(11): 43-49. 张兰, 滕珂, 肖国增, 等. 日本结缕草ZjADH基因对拟南芥的转化及其耐寒性分析. 草业学报, 2016, 25(11): 43-49. [16] Chao Y H.Identification of HST genes in alfalfa MsZFN and Arabidopsis. Beijing: Chinese Academy of Agricultural Sciences, 2014. 晁跃辉. 紫花苜蓿MsZFN及拟南芥HST基因鉴定. 北京: 中国农业科学院, 2014. [17] Steven J C, Andrew F B.Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743. [18] Livak K J, Schmittgen T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 2001, 25: 402-408. [19] Ding Y M, Ma L H, Sun M L, et al. Correlation between changes of proline and malondialdehyde content in potato leaves and drought tolerance under drought stress. Southwest Agricultural Journal, 2013, 26(1): 106-110. 丁玉梅, 马龙海, 孙茂林, 等. 干旱胁迫下马铃薯叶片脯氨酸、丙二醛含量变化及与耐旱性的相关性分析. 西南农业学报, 2013, 26(1): 106-110. [20] Xiang J H, Li L Z, Chen X B.Research progress on plant abiotic stress-related zinc finger protein genes. Journal of Nuclear Agricultural Sciences, 2012, 26(4): 666-672. 向建华, 李灵之, 陈信波. 植物非生物逆境相关锌指蛋白基因的研究进展. 核农学报, 2012, 26(4): 666-672. [21] Song B, Hong Y, Wang P W, et al, Research progress on plant C2H2 zinc finger protein. Genomics and Applied Biology, 2010, 29(5): 1133-1141. 宋冰, 洪洋, 王丕武, 等. 植物C2H2型锌指蛋白的研究进展. 基因组学与应用生物学, 2010, 29(5): 1133-1141. [22] Tian L M, Huang C L, Zhang X H, et al. Progress in the study of stress-related plant zinc finger proteins. Biotechnology Bulletin, 2005, 26(6): 414-418. 田路明, 黄丛林, 张绣海, 等. 逆境相关植物锌指蛋白的研究进展. 生物技术通报, 2005, 26(6): 414-418. [23] Xuan N, Liu X, Zhang H, et al. Response of maize zinc finger protein gene ZmAN14 overexpressing transgenic tobacco to abiotic stress. Chinese Agricultural Sciences, 2015, 48(5): 841-850. 宣宁, 柳絮, 张华, 等. 玉米锌指蛋白基因ZmAN14过表达转基因烟草对非生物胁迫的响应. 中国农业科学, 2015, 48(5): 841-850. [24] Xuan N, Jin Y, Zhang H W, et al. A putative maize zinc-finger protein gene, ZmAN13, participates in abiotic stress response. Plant Cell, 2011, 107(1): 101-112. [25] Zhang H P, Niu J Y, Xuan C X, et al. Effects of drought stress and rewatering on the contents of proline and malondialdehyde in pea leaves. Journal of Gansu Agricultural University, 2008, 43(5): 50-54. 张红萍, 牛俊义, 轩春香, 等. 干旱胁迫及复水对豌豆叶片脯氨酸和丙二醛含量的影响. 甘肃农业大学学报, 2008, 43(5): 50-54. [26] Guo C F, Sun Y.Advances in osmotic adjustment and proline metabolism of plants under drought stress. Journal of Fujian Education Institute, 2015, 5(1): 114-118. 郭春芳, 孙云. 干旱胁迫下植物的渗透调节及脯氨酸代谢研究进展. 福建教育学院学报, 2015, 5(1): 114-118. [27] Lu S Y, Chen S P, Chen S M, et al. Changes in proline content and antioxidant enzyme activities of three warm-season turf grasses under drought conditions. Journal of Horticulture, 2003, 30(3): 303-306. 卢少云, 陈斯平, 陈斯曼, 等. 三种暖季型草坪草在干旱条件下脯氨酸含量和抗氧化酶活性的变化. 园艺学报, 2003, 30(3): 303-306. [28] Li S S, Li H, Yang W G, et al. Physiological and molecular mechanisms of drought resistance. Pratacultural Science, 2018, 35(2): 331-340. 李莎莎, 李红, 杨伟光, 等, 苜蓿抗旱生理与分子机制. 草业科学, 2018, 35(2): 331-340. [29] Li H Y, Cheng H Y, Guo Y, et al. Research progress on drought resistance mechanism of millet. Journal of Shanxi Agricultural University (Natural Science Edition), 2018, 38(1): 6-10. 李红英, 程鸿燕, 郭昱, 等. 谷子抗旱机制研究进展. 山西农业大学学报(自然科学版), 2018, 38(1): 6-10. [30] Sun S J, Guo S Q, Yang X, et al. Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. Journal of Experimental Botany, 2010, 61(10): 2807-2818. [31] Li J.Analysis of drought resistance function of sugarcane Δ1-pyrroline-5-carboxylic acid synthase gene (SoP5CS). Guangxi University, 2017. 李健. 甘蔗Δ1-吡咯啉-5-羧酸合成酶基因(SoP5CS)的抗旱功能分析. 广西大学, 2017. [32] Chen J B, Zhao L Y, Mao X G, et al. Response of transgenic PvP5CS1 gene Arabidopsis plants to drought and salt stress. Acta Agronomica Sinica, 2010, 36(1): 147-153. 陈吉宝, 赵丽英, 毛新国, 等. 转PvP5CS1基因拟南芥植株对干旱和盐胁迫的反应. 作物学报, 2010, 36(1): 147-153. [33] Wang M F, Hua L F.LEA protein and its role in crop stress resistance. Northern Agricultural Journal, 2018, 46(4): 70-76. 王梦飞, 滑璐玢. LEA蛋白及其在作物抗逆过程中的作用. 北方农业学报, 2018, 46(4): 70-76. [34] Pei J L, Yang H L, Li C P, et al. Analysis of late embryogenesis-rich protein (LEA) cotton and drought resistance. Molecular Plant Breeding, 2012, 10(3): 331-337. 裴金玲, 杨红兰, 李春平, 等. 转晚期胚胎发生丰富蛋白(LEA)基因棉花及抗旱性分析. 分子植物育种, 2012, 10(3): 331-337. |