Acta Prataculturae Sinica ›› 2020, Vol. 29 ›› Issue (10): 35-46.DOI: 10.11686/cyxb2020191
Previous Articles Next Articles
YANG Yang1, TIAN Li-hua2, TIAN Hao-qi2, SUN Huai-en2, ZHAO Jing-xue3, ZHOU Qing-ping2,*
Received:
2020-04-28
Online:
2020-10-20
Published:
2020-10-20
Contact:
*.E-mail: qpingzh@ali.yun.com
YANG Yang, TIAN Li-hua, TIAN Hao-qi, SUN Huai-en, ZHAO Jing-xue, ZHOU Qing-ping. Effect of climate warming on decomposition of plant litter in alpine meadow pastures in Northwestern Sichuan[J]. Acta Prataculturae Sinica, 2020, 29(10): 35-46.
[1] Sarah E, Hobbie. Plant species effects on nutrient cycling: Revisiting litter feedbacks. Trends in Ecology & Evolution, 2015, 30(6): 357-363. [2] Fornara D A, Tilman D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. Journal of Ecology, 2008, 96(2): 314-322. [3] Wang X, Yan P F, Zhan P F, 王行, 闫鹏飞, 展鹏飞, 等. 植物质量、模拟增温及生境对凋落物分解的相对贡献. 应用生态学报, 2018, 29(2): 474-482. [4] Parton W, Silver W L, Burke I C. Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 2007, 315: 361-364. [5] Bothwell L D, Selmants P C, Giardina C P. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests. The Journal of Life and Environmental Sciences, 2014, 2(13): 685. [6] Marty C, Houle D, Gagnon C. Variation in stocks and distribution of organic C in soils across 21 eastern Canadian temperate and boreal forests. Forest Ecology and Management, 2015, 345: 29-38. [7] Cornelissen J, Bodegom P, Aerts R. Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecology Letters, 2007, 10(7): 619-627. [8] Song P, Zhang N L, Ma K P. Impacts of global warming on litter decomposition. Acta Ecologica Sinica, 2014, 34(6): 1327-1339. [9] Shen Y P, Wang G Y. Key findings and assessment results of IPCC WGI Fifth Assessment Report. Journal of Glaciology and Geocryology, 2013, 35(5): 1068-1076. 沈永平, 王国亚. IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点. 冰川冻土, 2013, 35(5): 1068-1076. [10] IPCC (2013) Climate Change 2013: The physical science basis, the summary for policymakers of the working group I contribution to the fifth assessment report. New York: Cambridge University Press, 2013. [11] Peng S L, Liu Q. The dynamics of forest litter and its responses to global warming. Acta Ecologica Sinica, 2002, 22(9): 1534-1544. [12] Lin X W, Zhang Z H, Wang S P. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan Plateau. Agricultural and Forest Meteorology, 2011, 151(7): 792-802. [13] Song Y, Zhang X R, Yan H Z. Dynamics of microbes and enzyme activities during litter decomposition of [14] Salinas N, Malhi Y, Meir P. The sensitivity of tropical leaf litter decomposition to temperature: Results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytologist, 2011, 189(4): 967-977. [15] Cheng X L, Luo Y Q, Su B. Experimental warming and clipping altered litter carbon and nitrogen dynamics in a tallgrass prairie. Agriculture, Ecosystems & Environment, 2010, 138(3/4): 206-213. [16] Clarkson B R, Moore T R, Fitzgerald N B. Water table regime regulates litter decomposition in restiad peatlands, New Zealand. Ecosystem, 2014, 17(2): 317-326. [17] Xu Z F, Zhu J X, Wu R Z. Effects of litter quality and climate change along an elevational gradient on litter decomposition of subalpine forests, Eastern Tibetan Plateau, China. Journal of Forestry Research, 2016, 27(3): 505-511. [18] Luo C, Guang P X, Chao Z. Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan Plateau. Global Change Biology, 2010, 16(5): 1606-1617. [19] Sun T, Dong L L, Zheng W. Effects of long-term nitrogen deposition on fine root decomposition and its extracellular enzyme activities in temperate forests. Soil Biology & Biochemistry, 2016, 93: 50-59. [20] Berg B, Ekbohm G. Litter mass-loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forest VII. Canadian Journal of Botany, 1991, 69(7): 1449-1456. [21] Liu Q, Peng S L, Bi H. Nutrient dynamics of foliar litter in reciprocal decomposition in tropical and subtropical forests. Frontiers of Forestry in China, 2005, 27(1): 24-32. [22] Xu H M, Xue X. A research on summer vegetation characteristics & short-time responses to experimental warming of alpine meadow in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2013, 33(7): 2071-2083. 徐满厚, 薛娴. 青藏高原高寒草甸夏季植被特征及对模拟增温的短期响应. 生态学报, 2013, 33(7): 2071-2083. [23] Walther G R, Post E, Convey P. Ecological responses to recent climate change. Nature, 2002, 416(6879): 389-395. [24] Zhao X Q, Cao G M, Li Y N, et al.Alpine meadow ecosystem and global change. Beijing: Science Press, 2009. 赵新全, 曹广民, 李英年, 等. 高寒草甸生态系统与全球变化. 北京: 科学出版社, 2009. [25] Ze R D K, Wen Y L, Ai Y, 泽让东科, 文勇立, 艾鷖, 等. 放牧对青藏高原高寒草地土壤和生物量的影响. 草业科学, 2016, 33(10): 1975-1980. [26] Yang Y F, Zi H B, Liu M, 杨有芳, 字洪标, 刘敏, 等. 高寒草甸土壤微生物群落功能多样性对广布弓背蚁蚁丘扰动的响应. 草业学报, 2017, 26(1): 43-53. [27] Zhao Y Y. Study on the physiological and ecological response of typical plants in alpine meadow to temperature increase and simulated grazing. Beijing: University of Chinese Academy of Sciences, 2016. 赵艳艳. 高寒草甸典型植物对增温和模拟放牧的生理生态响应的研究. 北京: 中国科学院大学, 2016. [28] Ren F, Yang X X, Zhou H K, 任飞, 杨晓霞, 周华坤, 等. 青藏高原高寒草甸3种植物对模拟增温的生理生化响应. 西北植物学报, 2013, 33(11): 2257-2264. [29] Zhang J E. Commonly used experimental research methods and techniques of ecology. Beijing: Chemical Industry Press, 2007. 章家恩. 生态学常用实验研究方法与技术. 北京: 化学工业出版社, 2007. [30] Olson J S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 1963, 44: 322-331. [31] Chen C N. Spatial-temporal change of surface albedo and its driving force in grassland growing season on Qinghai-Tibet Plateau. Kaifeng: Henan University, 2019. 陈超男. 青藏高原草地生长季地表反照率时空变化及其驱动力分析. 开封: 河南大学, 2019. [32] Wang X Y, Zhao X Y, Li Y L, 王新源, 赵学勇, 李玉霖, 等. 环境因素对干旱半干旱区凋落物分解的影响研究进展. 应用生态学报, 2013, 24(11): 3300-3310. |
[1] | Zhi-biao NAN, Yan-rong WANG, Bin NIE, Chun-jie LI, Wei-guo ZHANG, Chao XIA. Breeding of Lanjian No. 3 common vetch and evaluation of its characteristics [J]. Acta Prataculturae Sinica, 2021, 30(4): 111-120. |
[2] | Wei ZHANG, Shu-hua YI, Yu QIN, Dong-hui SHANGGUAN, Yan QIN. Analysis of features and influencing factors of alpine meadow surface temperature based on UAV thermal thermography [J]. Acta Prataculturae Sinica, 2021, 30(3): 15-27. |
[3] | Wen-rong LUO, Guo-zheng HU, Ganjurjav H, Qing-zhu GAO, Yan LI, Yi-qing Ge, Yu LI, Shi-cheng HE, Luo-bu DANJIU. Effects of simulated drought on plant phenology and productivity in an alpine meadow in Northern Tibet [J]. Acta Prataculturae Sinica, 2021, 30(2): 82-92. |
[4] | WAN Fang, MENG Zhong-ju, DANG Xiao-hong, WANG Rui-dong, ZHANG Hui-min. C, N and P ecological stoichiometry characteristics of a Stipa species plant-soil system subject to grazing exclusion in a desert steppe [J]. Acta Prataculturae Sinica, 2020, 29(9): 49-55. |
[5] | WANG Xiu-yu, HUANG Xiao-xia, HE Ke-jian, SUN Xiao-neng, LÜZENG Zhe-zhou, ZHANG Yong, ZHU Mei, ZENG Rui-qin. The relationship between plant functional traits and soil physicochemical properties in alpine meadows in Northwestern Yunnan Province, China [J]. Acta Prataculturae Sinica, 2020, 29(8): 6-17. |
[6] | SUN Shi-xian, DING Yong, LI Xia-zi, WU Xin-hong, YAN Zhi-jian, YIN Qiang, LI Jin-zhuo. Effects of seasonal regulation of grazing intensity on soil erosion in desert steppe grassland [J]. Acta Prataculturae Sinica, 2020, 29(7): 23-29. |
[7] | YUE Ke-xin, GONG Ji-rui, YU Shang-yuan, BAOYIN Taogetao, YANG Bo, WANG Biao, ZHU Chen-chen, ZHANG Zi-he, SHI Jia-yu. Effects of litter quality and soil enzyme activity on litter decomposition rate in typical grassland subject to nitrogen addition [J]. Acta Prataculturae Sinica, 2020, 29(6): 71-82. |
[8] | QIU Yue, WU Peng-fei, WEI Xue. Differences among three artificial grasslands in dynamics and community diversity of soil microarthropods [J]. Acta Prataculturae Sinica, 2020, 29(5): 21-32. |
[9] | XU Tian-wei, ZHAO Jiong-chang, MAO Shao-juan, GENG Yuan-yue, LIU Hong-jin, ZHAO Xin-quan, XU Shi-xiao. Response of plant community structure and biomass to short-term rest grazing in an alpine meadow in Haibei Autonomous Prefecture of Qinghai [J]. Acta Prataculturae Sinica, 2020, 29(4): 1-8. |
[10] | WU Hao, ZHANG Chen, DAI Wen-kui. Interactive effects of climate warming and species diversity on the invasiveness of the alien weed Alternanthera philoxeroides [J]. Acta Prataculturae Sinica, 2020, 29(3): 38-48. |
[11] | SHUI Hong-wei, HASBAGAN Ganjurjav, WU Hong-bao, WANG Zi-xin, LÜ Cheng-wen, GAO Qing-zhu, HU Guo-zheng, YAN Jun, XIE Wen-dong, WANG You-xia. Effects of grazing exclusion on community characteristics and productivity of Stellera-dominated degraded grassland in the northern Tibetan Plateau [J]. Acta Prataculturae Sinica, 2020, 29(10): 14-21. |
[12] | HOU Meng-jing, GAO Jin-long, GE Jing, LI Yuan-chun, LIU Jie, YIN Jian-peng, FENG Qi-sheng, LIANG Tian-gang. An analysis of dynamic changes and their driving factors in marsh wetlands in the eastern Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2020, 29(1): 13-27. |
[13] | MA Hai-xia, ZHANG De-gang, CHEN Jin, GUO Chun-xiu, DONG Yong-ping, MA Yuan, KANG Yu-kun, CHEN Lu, DU Kai, CHEN Jian-gang. Change in factors influencing soil water holding capacity at microsites along a slope transect in alpine meadow in the eastern Qilian Mountains [J]. Acta Prataculturae Sinica, 2020, 29(1): 28-37. |
[14] | WANG Xin, LUO Xue-ping, ZI Hong-biao, YANG Wen-gao, HU Lei, WANG Chang-ting. Ecological stoichiometry characteristics of forest litter and its influencing factors in Qinghai Province [J]. Acta Prataculturae Sinica, 2019, 28(8): 1-14. |
[15] | LI Hai-yun, YAO Tuo, MA Ya-chun, ZHANG Hui-rong, LU Xiao-wen, YANG Xiao-lei, XIA Dong-hui, ZHANG Jian-gui, GAO Ya-min. Soil bacterial community changes across a degradation gradient in alpine meadow grasslands in the central Qilian Mountains [J]. Acta Prataculturae Sinica, 2019, 28(8): 170-179. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 431
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 407
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||