Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (1): 46-58.DOI: 10.11686/cyxb2020268
Previous Articles Next Articles
Cong-cong LI1(), Ya-xing ZHOU1, Qiang GU2, Ming-xin YANG2, Chuan-lu ZHU3, Zi-yuan PENG3, Kai XUE4, Xin-quan ZHAO5, Yan-fen WANG3, Bao-ming JI1, Jing ZHANG1()
Received:
2020-06-15
Revised:
2020-07-21
Online:
2021-01-20
Published:
2021-01-08
Contact:
Jing ZHANG
Cong-cong LI, Ya-xing ZHOU, Qiang GU, Ming-xin YANG, Chuan-lu ZHU, Zi-yuan PENG, Kai XUE, Xin-quan ZHAO, Yan-fen WANG, Bao-ming JI, Jing ZHANG. The species diversity and community assembly of arbuscular mycorrhizal fungi in typical alpine grassland in Sanjiangyuan region[J]. Acta Prataculturae Sinica, 2021, 30(1): 46-58.
变量 Variables | 高寒荒漠 Alpine desert | 高寒草原 Alpine steppe | 高寒草甸 Alpine meadow | 高寒湿地 Alpine wetland | 变异系数 Coefficient of variation (CV, %) |
---|---|---|---|---|---|
植物丰富度Plant richness | 8.54±0.45ab | 7.92±0.21bc | 9.54±0.65a | 6.78±0.78c | 24 |
香农-威纳指数Shannon-Wiener index | 1.93±0.05a | 1.89±0.03a | 2.06±0.09a | 1.65±0.11b | 14 |
土壤含水量SWC (%) | 4.39±0.44d | 14.06±0.38c | 22.60±1.03b | 37.30±2.82a | 68 |
土壤pH Soil pH | 8.88±0.02a | 8.18±0.02b | 8.07±0.05b | 8.19±0.09b | 4 |
土壤有机碳SOC (g·kg-1) | 5.83±0.85c | 27.68±5.10b | 58.75±3.55a | 53.19±5.51a | 73 |
可溶性有机碳DOC (mg·kg-1) | 68.04±1.63c | 119.51±6.46b | 160.34±5.16a | 156.45±4.17a | 33 |
土壤全氮TN (g·kg-1) | 0.75±0.07c | 2.84±0.46b | 5.00±0.35a | 5.28±0.43a | 66 |
土壤全磷TP (g·kg-1) | 0.25±0.01b | 0.51±0.02a | 0.51±0.02a | 0.49±0.03a | 29 |
土壤有效氮AN (mg·kg-1) | 11.48±0.50c | 58.84±2.12b | 78.15±5.22a | 73.57±11.68a | 60 |
土壤有效磷AP (mg·kg-1) | 2.62±0.46c | 6.39±0.44b | 8.80±0.42a | 5.80±0.90b | 49 |
有效氮磷比N∶P | 5.34±0.57b | 9.63±0.59b | 9.04±0.66b | 14.99±3.65a | 63 |
Table 1 Variability of plant and soil environmental factors
变量 Variables | 高寒荒漠 Alpine desert | 高寒草原 Alpine steppe | 高寒草甸 Alpine meadow | 高寒湿地 Alpine wetland | 变异系数 Coefficient of variation (CV, %) |
---|---|---|---|---|---|
植物丰富度Plant richness | 8.54±0.45ab | 7.92±0.21bc | 9.54±0.65a | 6.78±0.78c | 24 |
香农-威纳指数Shannon-Wiener index | 1.93±0.05a | 1.89±0.03a | 2.06±0.09a | 1.65±0.11b | 14 |
土壤含水量SWC (%) | 4.39±0.44d | 14.06±0.38c | 22.60±1.03b | 37.30±2.82a | 68 |
土壤pH Soil pH | 8.88±0.02a | 8.18±0.02b | 8.07±0.05b | 8.19±0.09b | 4 |
土壤有机碳SOC (g·kg-1) | 5.83±0.85c | 27.68±5.10b | 58.75±3.55a | 53.19±5.51a | 73 |
可溶性有机碳DOC (mg·kg-1) | 68.04±1.63c | 119.51±6.46b | 160.34±5.16a | 156.45±4.17a | 33 |
土壤全氮TN (g·kg-1) | 0.75±0.07c | 2.84±0.46b | 5.00±0.35a | 5.28±0.43a | 66 |
土壤全磷TP (g·kg-1) | 0.25±0.01b | 0.51±0.02a | 0.51±0.02a | 0.49±0.03a | 29 |
土壤有效氮AN (mg·kg-1) | 11.48±0.50c | 58.84±2.12b | 78.15±5.22a | 73.57±11.68a | 60 |
土壤有效磷AP (mg·kg-1) | 2.62±0.46c | 6.39±0.44b | 8.80±0.42a | 5.80±0.90b | 49 |
有效氮磷比N∶P | 5.34±0.57b | 9.63±0.59b | 9.04±0.66b | 14.99±3.65a | 63 |
变量 Variables | 高寒荒漠 Alpine desert | 高寒草原 Alpine steppe | 高寒草甸 Alpine meadow | 高寒湿地 Alpine wetland |
---|---|---|---|---|
OTU丰富度OTU richness | 322.54±8.87b | 333.85±9.88b | 343.00±4.84b | 188.78±29.57a |
香农-威纳指数Shannon-Wiener index | 3.23±0.09a | 3.29±0.06a | 3.37±0.10a | 3.09±0.30a |
PD指数Phylogentic diversity index | 6.38±0.14a | 6.47±0.15a | 6.66±0.06a | 4.26±0.47b |
Table 2 Differences in α diversity index of AM fungi among different grassland types
变量 Variables | 高寒荒漠 Alpine desert | 高寒草原 Alpine steppe | 高寒草甸 Alpine meadow | 高寒湿地 Alpine wetland |
---|---|---|---|---|
OTU丰富度OTU richness | 322.54±8.87b | 333.85±9.88b | 343.00±4.84b | 188.78±29.57a |
香农-威纳指数Shannon-Wiener index | 3.23±0.09a | 3.29±0.06a | 3.37±0.10a | 3.09±0.30a |
PD指数Phylogentic diversity index | 6.38±0.14a | 6.47±0.15a | 6.66±0.06a | 4.26±0.47b |
类型Type | F | P |
---|---|---|
高寒荒漠/高寒草原Alpine desert/alpine steppe | 4.89 | 0.001 |
高寒荒漠/高寒草甸Alpine desert/alpine meadow | 3.87 | 0.001 |
高寒荒漠/高寒湿地Alpine desert/alpine wetland | 7.03 | 0.001 |
高寒草原/高寒草甸Alpine steppe/alpine meadow | 3.00 | 0.002 |
高寒草原/高寒湿地Alpine steppe/alpine wetland | 8.11 | 0.001 |
高寒草甸/高寒湿地Alpine meadow/alpine wetland | 5.67 | 0.001 |
Table 3 PerMANOVA analysis of AM fungal community composition among different grassland types
类型Type | F | P |
---|---|---|
高寒荒漠/高寒草原Alpine desert/alpine steppe | 4.89 | 0.001 |
高寒荒漠/高寒草甸Alpine desert/alpine meadow | 3.87 | 0.001 |
高寒荒漠/高寒湿地Alpine desert/alpine wetland | 7.03 | 0.001 |
高寒草原/高寒草甸Alpine steppe/alpine meadow | 3.00 | 0.002 |
高寒草原/高寒湿地Alpine steppe/alpine wetland | 8.11 | 0.001 |
高寒草甸/高寒湿地Alpine meadow/alpine wetland | 5.67 | 0.001 |
项目 Item | OTU丰富度 OTU richness | 香农-威纳指数 Shannon-Wiener index | 谱系多样性指数 Faith’s phylogentic diversity index | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
植物丰富度Plant richness | 0.48 | 0.001 | -0.03 | 0.828 | 0.49 | 0.000 |
香农-威纳指数Shannon-Wiener index | 0.47 | 0.001 | -0.15 | 0.309 | 0.47 | 0.001 |
土壤含水量SWC | -0.59 | 0.000 | -0.07 | 0.657 | -0.60 | 0.000 |
pH | 0.05 | 0.715 | -0.04 | 0.788 | 0.07 | 0.654 |
土壤有机碳SOC | -0.17 | 0.248 | -0.12 | 0.403 | -0.17 | 0.243 |
土壤全氮TN | -0.23 | 0.109 | -0.13 | 0.385 | -0.24 | 0.104 |
土壤全磷TP | -0.06 | 0.697 | 0.04 | 0.777 | -0.08 | 0.594 |
土壤有效磷AP | 0.21 | 0.160 | 0.24 | 0.101 | 0.19 | 0.197 |
可溶性有机碳DOC | -0.23 | 0.124 | -0.04 | 0.809 | -0.23 | 0.112 |
土壤有效氮AN | -0.05 | 0.727 | 0.02 | 0.912 | -0.06 | 0.676 |
有效氮磷比N∶P | -0.33 | 0.024 | -0.40 | 0.005 | -0.32 | 0.027 |
Table 4 Correlation between α diversity index of AM fungi and environmental factors
项目 Item | OTU丰富度 OTU richness | 香农-威纳指数 Shannon-Wiener index | 谱系多样性指数 Faith’s phylogentic diversity index | |||
---|---|---|---|---|---|---|
r | P | r | P | r | P | |
植物丰富度Plant richness | 0.48 | 0.001 | -0.03 | 0.828 | 0.49 | 0.000 |
香农-威纳指数Shannon-Wiener index | 0.47 | 0.001 | -0.15 | 0.309 | 0.47 | 0.001 |
土壤含水量SWC | -0.59 | 0.000 | -0.07 | 0.657 | -0.60 | 0.000 |
pH | 0.05 | 0.715 | -0.04 | 0.788 | 0.07 | 0.654 |
土壤有机碳SOC | -0.17 | 0.248 | -0.12 | 0.403 | -0.17 | 0.243 |
土壤全氮TN | -0.23 | 0.109 | -0.13 | 0.385 | -0.24 | 0.104 |
土壤全磷TP | -0.06 | 0.697 | 0.04 | 0.777 | -0.08 | 0.594 |
土壤有效磷AP | 0.21 | 0.160 | 0.24 | 0.101 | 0.19 | 0.197 |
可溶性有机碳DOC | -0.23 | 0.124 | -0.04 | 0.809 | -0.23 | 0.112 |
土壤有效氮AN | -0.05 | 0.727 | 0.02 | 0.912 | -0.06 | 0.676 |
有效氮磷比N∶P | -0.33 | 0.024 | -0.40 | 0.005 | -0.32 | 0.027 |
项目 Item | 群落物种组成Virtual taxon composition | 谱系组成Phylogenetic composition | ||
---|---|---|---|---|
r | P | r | P | |
植物丰富度Plant richness | 0.24 | 0.007 | 0.11 | 0.099 |
香农-威纳指数Shannon-Wiener index | 0.26 | 0.009 | 0.12 | 0.107 |
土壤含水量SWC | 0.58 | 0.001 | 0.49 | 0.001 |
pH | 0.08 | 0.113 | 0.19 | 0.001 |
土壤有机碳SOC | 0.14 | 0.018 | 0.23 | 0.001 |
土壤全氮TN | 0.17 | 0.009 | 0.28 | 0.002 |
土壤全磷TP | 0.07 | 0.166 | 0.09 | 0.110 |
土壤有效磷AP | 0.02 | 0.347 | 0.15 | 0.013 |
可溶性有机碳DOC | 0.09 | 0.040 | 0.19 | 0.001 |
土壤有效氮AN | 0.18 | 0.011 | 0.23 | 0.004 |
有效氮磷比N∶P | 0.30 | 0.029 | 0.45 | 0.001 |
Table 5 Mantel test analysis of AM fungal community composition and environmental factors
项目 Item | 群落物种组成Virtual taxon composition | 谱系组成Phylogenetic composition | ||
---|---|---|---|---|
r | P | r | P | |
植物丰富度Plant richness | 0.24 | 0.007 | 0.11 | 0.099 |
香农-威纳指数Shannon-Wiener index | 0.26 | 0.009 | 0.12 | 0.107 |
土壤含水量SWC | 0.58 | 0.001 | 0.49 | 0.001 |
pH | 0.08 | 0.113 | 0.19 | 0.001 |
土壤有机碳SOC | 0.14 | 0.018 | 0.23 | 0.001 |
土壤全氮TN | 0.17 | 0.009 | 0.28 | 0.002 |
土壤全磷TP | 0.07 | 0.166 | 0.09 | 0.110 |
土壤有效磷AP | 0.02 | 0.347 | 0.15 | 0.013 |
可溶性有机碳DOC | 0.09 | 0.040 | 0.19 | 0.001 |
土壤有效氮AN | 0.18 | 0.011 | 0.23 | 0.004 |
有效氮磷比N∶P | 0.30 | 0.029 | 0.45 | 0.001 |
Fig.5 Contribution rate of plant community composition, soil water content and soil available N∶P to (A) AM fungal virtual taxon composition and (B) phylogenetic composition
Fig.6 The structural equation model shows the causal path of the effects of grassland type, plant community composition, soil water content and soil available N∶P on AM fungal virtual taxon composition and phylogenetic composition, and the standardized total effect coefficient (direct path+indirect path) of each factor on AM fungal community
1 | Webb C O, Ackerly D D, Mcpeek M A, et al. Phylogenies and community ecology. Annual Review of Ecology and Systematics, 2002, 33(1): 475-505. |
2 | Leibold M A, Mcpeek M A. Coexistence of the niche and neutral perspectives in community ecology. Ecology, 2006, 87(6): 1399-1410. |
3 | Mcgill B J, Maurer B A, Weiser M D. Empirical evaluation of neutral theory. Ecology, 2006, 87(6): 1411-1423. |
4 | Chai Y X. The species diversity and community assembly of arbuscular mycorrhizal fungi in Qilianshan Mountains on a northwest- facing slope and a southeast-facing slope. Lanzhou: Lanzhou University, 2018. |
柴宇星. 祁连山阴阳坡丛枝菌根真菌多样性及群落构建机制研究. 兰州: 兰州大学, 2018. | |
5 | Griffiths R I, Thomson B C, James P, et al. The bacterial biogeography of British soils. Environmental Microbiology, 2011, 13(6): 1642-1654. |
6 | Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(3): 626-631. |
7 | Shi Y, Grogan P, Sun H, et al. Multi-scale variability analysis reveals the importance of spatial distance in shaping Arctic soil microbial functional communities. Soil Biology and Biochemistry, 2015, 86: 126-134. |
8 | Valyi K, Mardhiah U, Rillig M C, et al. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. The ISME Journal, 2016, 10(10): 2341-2351. |
9 | Niu K C, Liu Y N, Shen Z H, et al. Community assembly: The relative importance of neutral theory and niche theory. Biodiversity Science, 2009, 17(6): 579-593. |
牛克昌, 刘怿宁, 沈泽昊, 等. 群落构建的中性理论和生态位理论. 生物多样性, 2009, 17(6): 579-593. | |
10 | Chu H Y, Feng M M, Liu X, et al. Soil microbial biogeography: Recent advances in China and research frontiers in the world. Acta Pedologica Sinica, 2020(3): 515-529. |
褚海燕, 冯毛毛, 柳旭, 等. 土壤微生物生物地理学: 国内进展与国际前沿. 土壤学报, 2020(3): 515-529. | |
11 | Wagg C, Bender S F, Widmer F, et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): 5266-5270. |
12 | Smith S E, Read D J. Mycorrhizal symbiosis. Cambridge: Academic Press, 2008. |
13 | Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology. Science, 2020, 367(6480): 867-878. |
14 | Vázquez E, Benito M, Espejo R, et al. No-tillage and liming increase the root mycorrhizal colonization, plant biomass and N content of a mixed oat and vetch crop. Soil and Tillage Research, 2020, DOI: 10.1016/j.still.2020.104623. |
15 | Wu Q, Srivastava A K, Zou Y. AMF-induced tolerance to drought stress in citrus: A review. Scientia Horticulturae, 2013, 164: 77-87. |
16 | Liu Y J. The mechanisms of anthropogenic disturbances on arbuscular mycorrhizal fungal communities. Lanzhou: Lanzhou University, 2012. |
刘永俊. 扰动对AM真菌群落影响及机制研究. 兰州: 兰州大学, 2012. | |
17 | Hodge A, Fitter A H. Microbial mediation of plant competition and community structure. Functional Ecology, 2013, 27(4): 865-875. |
18 | Koziol L, Bever J D. The missing link in grassland restoration: Arbuscular mycorrhizal fungi inoculation increases plant diversity and accelerates succession. Journal of Applied Ecology, 2017, 54(5): 1301-1309. |
19 | Leifheit E F, Veresoglou S D, Lehmann A, et al. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis. Plant and Soil, 2014, 374(1/2): 523-537. |
20 | Cheng L, Booker F L, Tu C, et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 2012, 337(6098): 1084-1087. |
21 | Powell J R, Rillig M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function. New Phytologist, 2018, 220(4): 1059-1075. |
22 | van der Heijden M G A, Martin F M, Selosse M, et al. Mycorrhizal ecology and evolution: The past, the present, and the future. New Phytologist, 2015, 205(4): 1406-1423. |
23 | Jiang S, Liu Y, Luo J, et al. Dynamics of arbuscular mycorrhizal fungal community structure and functioning along a nitrogen enrichment gradient in an alpine meadow ecosystem. New Phytologist, 2018, 220(4): 1222-1235. |
24 | Shi G, Liu Y, Johnson N C, et al. Interactive influence of light intensity and soil fertility on root-associated arbuscular mycorrhizal fungi. Plant and Soil, 2014, 378(1/2): 173-188. |
25 | Zhang J, Wang F, Che R, et al. Corrigendum: Precipitation shapes communities of arbuscular mycorrhizal fungi in Tibetan Alpine Steppe. Scientific Reports, 2016, 6: 23488. |
26 | Dumbrell A J, Nelson M, Helgason T, et al. Relative roles of niche and neutral processes in structuring a soil microbial community. The ISME Journal, 2010, 4(3): 337-345. |
27 | Neuenkamp L, Moora M, öpik M, et al. The role of plant mycorrhizal type and status in modulating the relationship between plant and arbuscular mycorrhizal fungal communities. New Phytologist, 2018, 220(4): 1236-1247. |
28 | Lekberg Y, Koide R T, Rohr J R, et al. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. Journal of Ecology, 2007, 95(1): 95-105. |
29 | Hao A H, Xue X, Peng F, et al. Different vegetation and soil degradation characteristics of a typical grassland in the Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 2020, 40(3): 964-975. |
郝爱华, 薛娴, 彭飞, 等. 青藏高原典型草地植被退化与土壤退化研究. 生态学报, 2020, 40(3): 964-975. | |
30 | Zhang L, Zhou G S, Ji Y H, et al. Spatiotemporal dynamic simulation of grassland carbon storage in China. Scientia Sinica (Terrae), 2016, 46(10): 1392-1405. |
张利, 周广胜, 汲玉河, 等. 中国草地碳储量时空动态模拟研究. 中国科学: 地球科学, 2016, 46(10): 1392-1405. | |
31 | Chen J J. Research on change of fractional vegetation cover of alpine grassland and its environmental impact factors on the Qinghai-Tibetan Plateau. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 533. |
陈建军. 青藏高原高寒草地植被覆盖度变化及其环境影响因子研究. 测绘学报, 2020, 49(4): 533. | |
32 | Xue K, Zhang B, Zhou S T, et al. Soil microbial communities in alpine grasslands on the Tibetan Plateau and their influencing factors. Chinese Science Bulletin. 2019, 64(27): 2915-2927. |
薛凯, 张彪, 周姝彤, 等. 青藏高原高寒草地土壤微生物群落及影响因子. 科学通报, 2019, 64(27): 2915-2927. | |
33 | Qiu Y, Wu P F, Wei X. Differences among three artificial grasslands in dynamics and community diversity of soil microarthropods. Acta Prataculturae Sinica, 2020, 29(5): 21-32. |
邱月, 吴鹏飞, 魏雪. 三种人工草地小型土壤节肢动物群落多样性动态及其差异. 草业学报, 2020, 29(5): 21-32. | |
34 | Yao T D, Zhu L P. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy. Advances in Earth Science, 2006(5): 459-464. |
姚檀栋, 朱立平. 青藏高原环境变化对全球变化的响应及其适应对策. 地球科学进展, 2006, 25(5): 459-464. | |
35 | Yao T D, Thompson L G, Mosbrugger V, et al. Third pole environment (TPE). Environmental Development, 2012, 3: 52-64. |
36 | Zhang L, Wang X J, Wang Q, et al. Advances in the study of arbuscular mycorrhizal fungi in high altitude and cold habitats on Tibetan Plateau. Journal of Fungal Research, 2017, 15(1): 58-69. |
张亮, 王晓娟, 王强, 等. 青藏高原高寒生境中丛枝菌根真菌研究进展. 菌物研究, 2017, 15(1): 58-69. | |
37 | Liu A R, Yang T, Xu W, et al. Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland. Biodiversity Science, 2018, 26(9): 972-987. |
刘安榕, 杨腾, 徐炜, 等. 青藏高原高寒草地地下生物多样性: 进展、问题与展望. 生物多样性, 2018, 26(9): 972-987. | |
38 | Li X, Gai J, Cai X, et al. Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza, 2014, 24(2): 95-107. |
39 | Peng Y L, Cai X B. Changes of arbuscular mycorrhizal fungal community in an alpine grassland altitudinal gradient. Acta Ecologica Sinica, 2015, 35(22): 7475-7484. |
彭岳林, 蔡晓布. 丛枝菌根真菌群落沿高寒草原海拔梯度的变化特征. 生态学报, 2015, 35(22): 7475-7484. | |
40 | Lu R K. Analytical methods of soil agricultural chemistry. Beijing: China Agricultural Science Press, 2000. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000: 12-193. | |
41 | Nelson D W, Sommers L E. Total carbon, organic carbon, and organic matter//In: Sparks D L, Page A L, Helmke P A, et al. Methods of soil analysis. Part 3: Chemical methods. Madison, Wisconsin, USA: Soil Science Society of America, 1996: 961-1010. |
42 | Bremner J M, Mulvaney C S. Nitrogen-total//In: Page A L, Miller R H, Keeney D R, et al. Methods of soil analysis. Part 2: Chemical and microbiological properties (2nd Edition). Madison: American Society of Agronomy, 1982: 595-624. |
43 | Olsen S R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, 1954, 939: 1-19. |
44 | Kembel S W, Cowan P D, Helmus M R, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics, 2010, 26(11): 1463-1464. |
45 | Jia X, Dini-Andreote F, Salles J F. Community assembly processes of the microbial rare biosphere. Trends in Microbiology, 2018, 26(9): 738-747. |
46 | Hooper D, Coughlan J, Mullen M R. Structural equation modeling: Guidelines for determining model fit. The Electronic Journal of Business Research Methods, 2008, 6: 53-60. |
47 | Wang Y S, Liu R J. A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota. Mycosystema, 2017, 36(7): 820-850. |
王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录. 菌物学报, 2017, 36(7): 820-850. | |
48 | The second Qinghai-Tibet Plateau comprehensive scientific expedition team. The second Qinghai-Tibet Plateau comprehensive scientific expedition and research series: The status, changes and management of the ecosystem of Sanjiangyuan National Park. Beijing: Science Press, 2020. |
第二次青藏高原综合科学考察研究队. 第二次青藏高原综合科学考察研究丛书: 三江源国家公园生态系统现状、变化及管理(印刷中). 北京: 科学出版社, 2020. | |
49 | Bauer C R, Kellogg C H, Bridgham S D, et al. Mycorrhizal colonization across hydrologic gradients in restored and reference freshwater wetlands. Wetlands, 2003, 23(4): 961-968. |
50 | Cai X B, Peng Y L. Change of arbuscular mycorrhizal fungi community in response to elevational gradients on the Tibetan Plateau, China. Chinese Journal of Applied Ecology, 2015, 26(9): 2803-2810. |
蔡晓布, 彭岳林. 西藏高原不同海拔区域丛枝菌根真菌群落的变化. 应用生态学报, 2015, 26(9): 2803-2810. | |
51 | García L B M, Richardson S J, Tylianakis J M, et al. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytologist, 2015, 205(4): 1565-1576. |
52 | Verbruggen E, Van der Heijden M G A, Weedon J T, et al. Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Molecular Ecology, 2012, 21(10): 2341-2353. |
53 | Börstler B, Renker C, Kahmen A, et al. Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biology and Fertility of Soils, 2006, 42(4): 286-298. |
54 | Hiiesalu I, Paertel M, Davison J, et al. Species richness of arbuscular mycorrhizal fungi: Associations with grassland plant richness and biomass. New Phytologist, 2014, 203(1): 233-244. |
55 | Johnson D, Ijdo M, Genney D R, et al. How do plants regulate the function, community structure, and diversity of mycorrhizal fungi? Journal of Experimental Botany, 2005, 56(417): 1751-1760. |
56 | Bever J D, Richardson S C, Lawrence B M, et al. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters, 2009, 12(1): 13-21. |
57 | öpik M, Metsis M, Daniell T J, et al. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytologist, 2009, 184(2): 424-437. |
58 | Vályi K, Rillig M C, Hempel S. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. New Phytologist, 2015, 205(4): 1577-1586. |
59 | Wagg C, Jansa J, Stadler M, et al. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology, 2011, 92(6): 1303-1313. |
60 | Werner G D A, Kiers E T. Partner selection in the mycorrhizal mutualism. New Phytologist, 2015, 205(4): 1437-1442. |
61 | Lekberg Y, Schnoor T, Kjoller R, et al. 454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. Journal of Ecology, 2012, 100(1): 151-160. |
62 | de Vries F T, van Groenigen J W, Hoffland E, et al. Nitrogen losses from two grassland soils with different fungal biomass. Soil Biology and Biochemistry, 2011, 43(5): 997-1005. |
63 | Clark N M, Rillig M C, Nowak R S. Arbuscular mycorrhizal fungal abundance in the Mojave Desert: Seasonal dynamics and impacts of elevated CO2. Journal of Arid Environments, 2009, 73(9): 834-843. |
64 | Staddon P L, Gregersen R, Jakobsen I. The response of two Glomus mycorrhizal fungi and a fine endophyte to elevated atmospheric CO2, soil warming and drought. Global Change Biology, 2004, 10(11): 1909-1921. |
65 | Miller S P, Sharitz R R. Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semiaquatic grass species. Functional Ecology, 2000, 14(6): 738-748. |
66 | Johnson D, Vandenkoornhuyse P J, Leake J R, et al. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytologist, 2004, 161(2): 503-515. |
67 | Yang H, Yuan Y, Zhang Q, et al. Changes in soil organic carbon, total nitrogen, and abundance of arbuscular mycorrhizal fungi along a large-scale aridity gradient. Catena, 2011, 87(1): 70-77. |
68 | Johnson N C. Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist, 2010, 185(3): 631-647. |
69 | Werner G D, Strassmann J E, Ivens A B, et al. Evolution of microbial markets. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1237-1244. |
70 | Treseder K K, Allen M F. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: A model and field test. New Phytologist, 2002, 155(3): 507-515. |
71 | Liu Y, Mao L, Li J, et al. Resource availability differentially drives community assemblages of plants and their root-associated arbuscular mycorrhizal fungi. Plant and Soil, 2015, 386(1): 341-355. |
72 | Horn S, Caruso T, Verbruggen E, et al. Arbuscular mycorrhizal fungal communities are phylogenetically clustered at small scales. The ISME Journal, 2014, 8(11): 2231-2242. |
[1] | QIN Yu, YI Shu-hua, LI Nai-jie, REN Shi-long, WANG Xiao-yun, CHEN Jian-jun. Advance in studies of carbon cycling on alpine grasslands of the Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2012, 21(6): 275-285. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||