Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (1): 57-68.DOI: 10.11686/cyxb2020478
Previous Articles Next Articles
Wen-ming MA(), Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU
Received:
2020-10-27
Revised:
2020-12-28
Online:
2021-12-01
Published:
2021-12-01
Contact:
Wen-ming MA
Wen-ming MA, Chao-wen LIU, Qing-ping ZHOU, Zhuo-ma DENGzeng, Si-hong TANG, Diliyaer·mohetaer, Chen HOU. Effects of shrub encroachment on soil aggregate ecological stoichiometry and enzyme activity in alpine grassland[J]. Acta Prataculturae Sinica, 2022, 31(1): 57-68.
粒径 Particle size (mm) | 草地类型 Grassland type | pH | 土壤有机碳 Soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) |
---|---|---|---|---|---|---|
>2 | 未灌丛化草地Alpine grassland | 5.57±0.07a | 8.40±0.32a | 0.74±0.03a | 1.82±0.21a | 19.55±1.08a |
灌丛化草地Shrub encroachment | 5.49±0.22a | 8.06±0.52a | 0.70±0.02a | 1.69±0.07a | 19.58±1.69a | |
0.25~2 | 未灌丛化草地Alpine grassland | 5.77±0.06a | 8.41±0.46a | 0.74±0.04a | 1.92±0.26a | 19.68±0.95a |
灌丛化草地Shrub encroachment | 5.45±0.10a | 8.14±0.51a | 0.72±0.03a | 1.76±0.06b | 19.80±1.51a | |
0.053~0.25 | 未灌丛化草地Alpine grassland | 5.86±0.06a | 8.84±0.53a | 0.75±0.04a | 1.92±0.21a | 19.26±1.28a |
灌丛化草地Shrub encroachment | 5.67±0.07a | 8.71±0.65a | 0.76±0.05a | 1.74±0.10a | 20.10±1.65a | |
0.002~0.053 | 未灌丛化草地Alpine grassland | 5.92±0.09a | 6.59±0.38a | 0.59±0.03a | 1.49±0.21a | 18.80±0.86a |
灌丛化草地Shrub encroachment | 5.76±0.07a | 5.71±0.68a | 0.51±0.05a | 1.35±0.15a | 19.03±1.25a | |
<0.002 | 未灌丛化草地Alpine grassland | 6.03±0.06a | 7.21±0.34a | 0.66±0.44a | 1.97±0.27a | 20.20±1.34a |
灌丛化草地Shrub encroachment | 5.77±0.09a | 6.70±0.25a | 0.61±0.02a | 1.57±0.10a | 20.20±1.82a |
Table 1 Properties of the various aggregates in shrub encroachment and alpine grassland
粒径 Particle size (mm) | 草地类型 Grassland type | pH | 土壤有机碳 Soil organic carbon (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) |
---|---|---|---|---|---|---|
>2 | 未灌丛化草地Alpine grassland | 5.57±0.07a | 8.40±0.32a | 0.74±0.03a | 1.82±0.21a | 19.55±1.08a |
灌丛化草地Shrub encroachment | 5.49±0.22a | 8.06±0.52a | 0.70±0.02a | 1.69±0.07a | 19.58±1.69a | |
0.25~2 | 未灌丛化草地Alpine grassland | 5.77±0.06a | 8.41±0.46a | 0.74±0.04a | 1.92±0.26a | 19.68±0.95a |
灌丛化草地Shrub encroachment | 5.45±0.10a | 8.14±0.51a | 0.72±0.03a | 1.76±0.06b | 19.80±1.51a | |
0.053~0.25 | 未灌丛化草地Alpine grassland | 5.86±0.06a | 8.84±0.53a | 0.75±0.04a | 1.92±0.21a | 19.26±1.28a |
灌丛化草地Shrub encroachment | 5.67±0.07a | 8.71±0.65a | 0.76±0.05a | 1.74±0.10a | 20.10±1.65a | |
0.002~0.053 | 未灌丛化草地Alpine grassland | 5.92±0.09a | 6.59±0.38a | 0.59±0.03a | 1.49±0.21a | 18.80±0.86a |
灌丛化草地Shrub encroachment | 5.76±0.07a | 5.71±0.68a | 0.51±0.05a | 1.35±0.15a | 19.03±1.25a | |
<0.002 | 未灌丛化草地Alpine grassland | 6.03±0.06a | 7.21±0.34a | 0.66±0.44a | 1.97±0.27a | 20.20±1.34a |
灌丛化草地Shrub encroachment | 5.77±0.09a | 6.70±0.25a | 0.61±0.02a | 1.57±0.10a | 20.20±1.82a |
草地类型Grassland type | 土壤团聚体Soil aggregate (mm) | 碳氮比C/N | 碳磷比C/P | 氮磷比N/P |
---|---|---|---|---|
灌丛化草地 Shrub encroachment | >2 | 11.45±0.35a | 4.79±0.70a | 0.41±0.04ab |
0.25~2 | 11.33±0.36ab | 4.62±0.62a | 0.40±0.04ab | |
0.053~0.25 | 11.43±0.34a | 5.01±0.68a | 0.43±0.04a | |
0.002~0.053 | 11.18±0.62ab | 4.27±0.90a | 0.37±0.03b | |
<0.002 | 11.02±0.22b | 4.27±0.47a | 0.38±0.03ab | |
未灌丛化草地 Alpine grassland | >2 | 11.37±0.27a | 4.52±0.45a | 0.39±0.03a |
0.25~2 | 11.41±0.24a | 4.39±0.21a | 0.38±0.02a | |
0.053~0.25 | 11.29±0.23ab | 4.44±0.56a | 0.40±0.04a | |
0.002~0.053 | 11.18±0.28ab | 4.48±0.69a | 0.40±0.58a | |
<0.002 | 11.00±0.19b | 4.08±0.39a | 0.37±0.03a |
Table 2 The C/N, C/P, N/P in various aggregates under shrub encroachment and alpine grassland
草地类型Grassland type | 土壤团聚体Soil aggregate (mm) | 碳氮比C/N | 碳磷比C/P | 氮磷比N/P |
---|---|---|---|---|
灌丛化草地 Shrub encroachment | >2 | 11.45±0.35a | 4.79±0.70a | 0.41±0.04ab |
0.25~2 | 11.33±0.36ab | 4.62±0.62a | 0.40±0.04ab | |
0.053~0.25 | 11.43±0.34a | 5.01±0.68a | 0.43±0.04a | |
0.002~0.053 | 11.18±0.62ab | 4.27±0.90a | 0.37±0.03b | |
<0.002 | 11.02±0.22b | 4.27±0.47a | 0.38±0.03ab | |
未灌丛化草地 Alpine grassland | >2 | 11.37±0.27a | 4.52±0.45a | 0.39±0.03a |
0.25~2 | 11.41±0.24a | 4.39±0.21a | 0.38±0.02a | |
0.053~0.25 | 11.29±0.23ab | 4.44±0.56a | 0.40±0.04a | |
0.002~0.053 | 11.18±0.28ab | 4.48±0.69a | 0.40±0.58a | |
<0.002 | 11.00±0.19b | 4.08±0.39a | 0.37±0.03a |
1 | Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Science Society of America Journal, 1986, 50(3): 627-633. |
2 | Brandt J S, Haynes M A, Kuemmerle T, et al. Regime shift on the roof of the world: Alpine meadows converting to shrublands in the Southern Himalayas. Biological Conservation, 2013, 158(2): 116-127. |
3 | Wang G, Qian J, Cheng G, et al. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Science of the Total Environment, 2002, 291: 207-217. |
4 | Jastrow J D. Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology and Biochemistry, 1996, 28(4/5): 665-676. |
5 | Pan G X, Zhou P, Li L Q, et al. Core issues and research progresses of soil science of C sequestration. Acta Pedologica Sinica, 2007, 44(2): 327-337. |
潘根兴, 周萍, 李恋卿, 等. 固碳土壤学的核心问题与研究进展. 土壤学报, 2007, 44(2): 327-337. | |
6 | Wu X D, Song N P, Pan J. Effect of shrub (Caragana intermedia) encroachment under different sandy habitats on content and distribution of soil organic carbon in desert grassland. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(10): 115-121. |
吴旭东, 宋乃平, 潘军. 不同沙地生境下柠条灌丛化对草地土壤有机碳含量及分布的影响. 农业工程学报, 2016, 32(10): 115-121. | |
7 | Li D W, Wang Z Q, Tian H X, et al. Carbon, nitrogen and phosphorus contents in soils on Taibai Mountain and their ecological stoichiometry relative to elevation. Acta Pedologica Sinica, 2017, 54(1): 160-170. |
李丹维, 王紫泉, 田海霞, 等. 太白山不同海拔土壤碳、氮、磷含量及生态化学计量特征. 土壤学报, 2017, 54(1): 160-170. | |
8 | Xie J, Chang S L, Zhang Y T, et al. Plant and soil ecological stoichiometry with vertical zonality on the northern slope of the middle Tianshan Mountains. Acta Ecologica Sinica, 2016, 36(14): 4363-4372. |
谢锦, 常顺利, 张毓涛, 等. 天山北坡植物土壤生态化学计量特征的垂直地带性. 生态学报, 2016, 36(14): 4363-4372. | |
9 | Cao H, Sun H, Yang H. A review soil enzyme activity and its indication for soil quality. Chinese Journal of Applied and Environmental Biology, 2003, 9(1): 105-109. |
曹慧, 孙辉, 杨浩. 土壤酶活性及其对土壤质量的指示研究进展. 应用与环境生物学报, 2003, 9(1): 105-109. | |
10 | Trivedi P, Rochester I J, Trivedi C, et al. Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities. Soil Biology and Biochemistry, 2015, 91: 169-181. |
11 | Li X, Ma R P, An S S, et al. Characteristics of soil organic carbon and enzyme activities in soil aggregates under different vegetation zones on the Loess Plateau. Chinese Journal of Applied Ecology, 2015, 26(8): 2282-2290. |
李鑫, 马瑞萍, 安韶山, 等. 黄土高原不同植被带土壤团聚体有机碳和酶活性的粒径分布特征. 应用生态学报, 2015, 26(8): 2282-2290. | |
12 | Gong X, Wang J J, Pang W. Effects of different recovery modes on soil aggregates and enzyme activities in continuous cotton fields. Xinjiang Farm Research of Science and Technology, 2016, 39(5): 60-62. |
宫雪, 王建军, 庞玮. 长期连作棉田不同恢复模式对土壤团聚体及酶活性的影响. 新疆农垦科技, 2016, 39(5): 60-62. | |
13 | Ji X Y, Li Y H. Effects of different revegetation types on soil enzyme activities in different aggregates fractions in Loess Plateau. Bulletin of Soil and Water Conservation, 2018, 38(1): 24-28, 35. |
姬秀云, 李玉华. 黄土高原植被恢复对不同粒径土壤团聚体中酶活性的影响. 水土保持通报, 2018, 38(1): 24-28, 35. | |
14 | Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Science Society of America Journal, 1993, 57: 1071-1076. |
15 | Guan S Y. Soil enzyme and its research methods. Beijing: Agriculture Press, 1986. |
关松荫. 土壤酶及其研究法. 北京: 农业出版社, 1986. | |
16 | Six J, Bossuyt H, Degryze S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research, 2004, 79(1): 7-31. |
17 | Six J, Paustian K. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool. Soil Biology and Biochemistry, 2014, 68: A4-A9. |
18 | Tian H Q, Chen G S, Zhang C, et al. Pattern and variation of C∶N∶P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 2010, 98(1/3): 139-151. |
19 | Li Y F, Luo A C, Wu L H, et al. Difference in P utilization from organic phosphate between two rice genotypes and its relations with root-secreted acid phosphatase activity. Chinese Journal of Applied Ecology, 2009, 20(5): 1072-1078. |
李永夫, 罗安程, 吴良欢, 等. 两个基因型水稻利用有机磷的差异及其与根系分泌酸性磷酸酶活性的关系. 应用生态学报, 2009, 20(5): 1072-1078. | |
20 | Chen C R, Condron L M, Davis M R, et al. Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.). Soil Biology and Biochemistry, 2002, 34(4): 487-499. |
21 | Liu X Z, Zhou G Y, Zhang D Q, et al. N and P stoichiometry of plant and soil in lower subtropical forest successional series in southern China. Chinese Journal of Plant Ecology, 2010, 34(1): 64-71. |
刘兴诏, 周国逸, 张德强, 等. 南亚热带森林不同演替阶段植物与土壤中N、P的化学计量特征. 植物生态学报, 2010, 34(1): 64-71. | |
22 | Zhou Y X, Lv M K, Xie J S, et al. Sources, characteristics and stability of organic carbon in deep soil. Journal of Subtropical Resources and Environment, 2013, 8(1): 48-55. |
周艳翔, 吕茂奎, 谢锦升, 等. 深层土壤有机碳的来源、特征与稳定性. 亚热带资源与环境学报, 2013, 8(1): 48-55. | |
23 | Wei K, Jiang H P, Qiao J F. Effect of livestock grazing on plant community and soil property in Junggar Desert, Xinjiang. Arid Land Geography, 2008, 31(5): 659-664. |
杨维康, 蒋慧萍, 乔建芳. 放牧对准噶尔荒漠植物群落及土壤特性的影响. 干旱区地理, 2008, 31(5): 659-664. | |
24 | Li W, Zheng Z C, Li T X. Ecological stoichiometry of soil carbon, nitrogen and phosphorus within soil aggregates in tea plantations with different ages. Chinese Journal of Applied Ecology, 2015, 26(1): 9-16. |
李玮, 郑子成, 李廷轩. 不同植茶年限土壤团聚体碳氮磷生态化学计量学特征. 应用生态学报, 2015, 26(1): 9-16. | |
25 | Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85(3): 235-252. |
26 | Xie G X, Lou X, Ruan Y F, et al. Characteristic and influencing factors of C/N ratio of farmland soil in Zhejiang Province. Acta Agriculturae Jiangxi, 2020, 32(2): 51-55. |
谢国雄, 楼旭, 阮弋飞, 等. 浙江省农田土壤碳氮比特征及影响因素分析. 江西农业学报, 2020, 32(2): 51-55. | |
27 | Cheng B, Zhao Y J, Zhang W G, et al. The research advances and prospect of ecological stoichiometry. Acta Ecologica Sinica, 2010, 30(6): 1628-1637. |
程滨, 赵永军, 张文广, 等. 生态化学计量学研究进展. 生态学报, 2010, 30(6): 1628-1637. | |
28 | Li H, Kang Z, Liu Y, et al. Carbon nanodots: Synthesis, properties and applications. Journal of Materials Chemistry, 2012, 22(46): 24230-24253. |
29 | Wang S Q, Yu G R. Ecological stoichiometry characteristics of ecosystem carbon nitrogen and phosphorus elements. Acta Ecologica Sinica, 2008(8): 3937-3947. |
王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 2008(8): 3937-3947. | |
30 | Perl P L, Lencina M V, Bousson J, et al. Biodiversity and ecological long-term plots in Southern Patagonia to support sustainable land management: The case of PEBANPA network. Journal for Nature Conservation, 2016, 34: 51-64. |
31 | Wang H J, Ning L M, Xu L X, et al. Vertical distribution characteristics of soil organic carbon content in an alpine-cold zone of northwest Sichuan. Chinese Journal of Soil Science, 2012, 43(1): 76-80. |
王华静, 宁龙梅, 徐留兴, 等. 川西北高寒地区土壤有机碳含量垂直分布特征. 土壤通报, 2012, 43(1): 76-80. | |
32 | Qi S M, Han Y, Chen X W. Effect of vegetation restoration on soil aggregates enzyme activity in typical black soil region. Journal of Northeast Forestry University, 2017, 45(6): 42-46. |
齐思明, 韩瑛, 陈祥伟. 植被恢复对典型黑土表层土壤团聚体水解酶活性的影响. 东北林业大学学报, 2017, 45(6): 42-46. | |
33 | Ma R P, An S S, Dang T H, et al. Soil organic carbon and enzymatic activity in aggregates of soils under different plant communities in hilly-gully regions of Loess Plateau. Acta Pedologica Sinica, 2014, 51(1): 104-113. |
马瑞萍, 安韶山, 党廷辉, 等. 黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究. 土壤学报, 2014, 51(1): 104-113. | |
34 | Liu Z L, Yu W T. Review of researches on soil aggregate and soil organic carbon. Chinese Journal of Ecological Agriculture, 2011, 19(2): 447-455. |
刘中良, 宇万太. 土壤团聚体中有机碳研究进展. 中国生态农业学报, 2011, 19(2): 447-455. | |
35 | Tietjen T, Wetzel G R. Extracellular enzyme-clay mineral complexes: Enzyme adsorption, alteration of enzyme activity, and protection from photodegradation. Aquatic Ecology, 2004, 37(4): 331-339. |
36 | Zeng X J, Liu D K, Zhu S M. Effects of different concentration of atrazine on soil catalase activity under three soil fertilise. Hunan Agricultural Sciences, 2005(6): 33-35. |
曾宪军, 刘登魁, 朱世民. 不同浓度阿特拉津对三种肥力条件土壤过氧化氢酶的影响. 湖南农业科学, 2005(6): 33-35. | |
37 | Xu L, Yan J J, Chen C, et al. Relationship between soil enzyme activity and nutrient content in irrigated calcareous soil. Southwest China Journal of Agricultural Sciences, 2018, 31(11): 2378-2385. |
徐莉, 闫俊杰, 陈晨, 等. 灌耕灰钙土农田土壤酶活性与养分的关系. 西南农业学报, 2018, 31(11): 2378-2385. | |
38 | Wang L D, Wang F L, Guo C X, et al. Review: Progress of soil enzymology. Soils, 2016, 48(1): 12-21. |
王理德, 王方琳, 郭春秀, 等. 土壤酶学研究进展. 土壤, 2016, 48(1): 12-21. | |
39 | Mccarron J K, Knapp A K. C3 woody plant expansion in a C4 grassland: Are grasses and shrubs functionally distinct? American Journal of Botany, 2001, 88(10): 1818-1823. |
40 | Naidja A, Huang P M, Bollag J M. Enzyme-clay interactions and their impact on transformations of natural and anthropogenic organic compounds in soil. Journal of Environmental Quality, 2000, 29(3): 677-691. |
[1] | Fen-sheng CHENG, Long-hui YOU, Jin-lin YU, Hui-chang XU, Hui-ming YOU, Sen NIE, Jian-min LI, Gong-fu YE. Effects of cold-season green manure on soil biochemical properties and the microbial community in a Castanea henryi orchard, China [J]. Acta Prataculturae Sinica, 2021, 30(11): 62-75. |
[2] | Shi-jing ZHOU, Jia-ning LUO, Zhong-miao LIU, Chao DONG, Yan QIN, Shu-juan WU, Hong-jun GAN, Fei XIE, Guang-hui ZHUANG, Bing-zhe FU, De-cao NIU. The effects of Vicia sativa planting density on soil microbial nutrient metabolism [J]. Acta Prataculturae Sinica, 2021, 30(10): 63-72. |
[3] | ZONG Wen-zhen, GUO Jia-hao, JIA Yun-long, ZHENG Yong-xing, YANG Xu, HU Fang-di, WANG Jing. Advances in research on the roles of tannins in plant-soil nitrogen cycling [J]. Acta Prataculturae Sinica, 2020, 29(7): 174-183. |
[4] | FENG Jun, SHI Chao, MEN Sheng-nan, Hafiz Athar Hussain, KE Jian-hong, Linna Cholidah, CHEN Jin-fen, GUO Xin, WU Hai-yan, RAN Tai-lin, XIANG Xin-hua, WANG Long-chang. Effects of water and fertilizer saving techniques on soil nutrient levels and enzyme activities under two different seasons with contrasting rainfall patterns [J]. Acta Prataculturae Sinica, 2020, 29(4): 51-62. |
[5] | ZHANG Jian-jun, DANG Yi, ZHAO Gang, WANG Lei, FAN Ting-lu, LI Shang-zhong, LEI Kang-ning. Effect of no-tillage with film and stubble residues on soil nutrients, microbial populations and enzyme activity in dryland maize fields [J]. Acta Prataculturae Sinica, 2020, 29(2): 123-133. |
[6] | LI Guo-qi, ZHAO Pan-pan, SHAO Wen-shan, JIN Chang-qing. Studies on the soil physical and chemical properties and enzyme activities of two fenced plant communities in desert steppe grassland [J]. Acta Prataculturae Sinica, 2019, 28(7): 49-59. |
[7] | LI Ming, QIN Jie, HONG Yu, YANG Dian-lin, ZHOU Guang-fan, WANG Yu, WANG Li-juan. Effects of nitrogen addition on ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in Stipa baicalensis grassland soil aggregates [J]. Acta Prataculturae Sinica, 2019, 28(12): 29-40. |
[8] | JIANG La-mei, YANG Xiao-dong, YANG Jian-jun, HE Xue-min, LÜ Guang-hui. Effects of different management strategies on soil organic carbon and nitrogen pools in arid areas and their influencing factors [J]. Acta Prataculturae Sinica, 2018, 27(12): 22-33. |
[9] | LI Wen-bin, NING Chu-han, XU Meng, LIU Run-jin, GUO Shao-xia. Arbuscular mycorrhizal fungi and Festuca elata can improve fertility of compacted soil [J]. Acta Prataculturae Sinica, 2018, 27(11): 131-141. |
[10] | QI Juan, YAO Tuo, BAI Xiao-Ming, GAO Meng-Ying, MENG Xiang-Jun. Impacts on alfalfa productivity and soil fertility of partially replacing phosphate fertilizers with microbial fertilizers [J]. Acta Prataculturae Sinica, 2017, 26(10): 118-128. |
[11] | LI Qian, YANG Shui-Ping, CUI Guang-Lin, HUANG Jian-Guo, LI Long-Yun, CHENG Yu-Yuan. Microbial biomass, enzyme activity and composition of the fungal community in rhizospheric soil cropped with Artemisia annua for several years [J]. Acta Prataculturae Sinica, 2017, 26(1): 34-42. |
[12] | QIN Yan, HE Feng, TONG Zong-Yong, CHEN Bao-Rui, LI Xiang-Lin. Influence of cutting interval on soil enzyme activity and nutrients in Leymus chinensis meadow [J]. Acta Prataculturae Sinica, 2016, 25(4): 55-62. |
[13] | ZHAO Xiaohong, YANG Dianlin, WANG Hui, LIU Hongmei, QU Bo, HUANGFU Chaohe. Effects of Flaveria bidentis invasion on soil nitrogen cycling and soil microbial biomass in different regions [J]. Acta Prataculturae Sinica, 2015, 24(2): 62-69. |
[14] | LIU Xiao-Dong, YIN Guo-Li, WU Jun, CHEN Jian-Gang, MA Long-Xi, SHI Shang-Li. Effects of nitrogen addition on the physical properties of soil in an alpine meadow on the eastern Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2015, 24(10): 12-21. |
[15] | WANG Li-de,YAO Tuo,HE Fang-lan,HAN Fu-gui,GUO Chun-xiu,WANG Fang-ling,WEI Lin-yuan. Natural vegetation restoration and change of soil enzyme activity on secondary grassland of abandoned land area in the downstream of Shiyang River [J]. Acta Prataculturae Sinica, 2014, 23(4): 253-261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||