Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (3): 207-213.DOI: 10.11686/cyxb2020599
De-kui CHEN(), Shuo WU, Xuan ZOU, Wei ZHOU, Xiao-yang CHEN(), Qing ZHANG()
Received:
2020-12-30
Revised:
2021-03-10
Online:
2022-03-20
Published:
2022-01-15
Contact:
Xiao-yang CHEN,Qing ZHANG
De-kui CHEN, Shuo WU, Xuan ZOU, Wei ZHOU, Xiao-yang CHEN, Qing ZHANG. Effect of catechol on the quality and antioxidant activity of Toona sinensis leaf silage[J]. Acta Prataculturae Sinica, 2022, 31(3): 207-213.
项目 Item | 表型 Phenotype | D15 | D30 | SEM | P值P value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 0.5%C | 1.0%C | CK | 0.5%C | 1.0%C | V | T | D | V×T | V×D | T×D | |||
干物质Dry matter (g·kg-1 FM) | RTSL | 417a | 429a | 417a | 417a | 424a | 419a | 7.37 | ** | NS | NS | NS | NS | NS |
GTSL | 383b | 372b | 374b | 389b | 379b | 372b | ||||||||
pH | RTSL | 5.12A | 5.07BC | 5.09B | 5.06C | 5.02D | 5.08BC | 0.04 | ** | ** | * | NS | ** | NS |
GTSL | 5.06AB | 5.01CD | 5.02CD | 5.08A | 5.00D | 5.04BC | ||||||||
乳酸Lactic acid (g·kg-1 DM) | RTSL | 15.20a | 10.20a | 9.51a | 13.60a | 10.90a | 9.54a | 2.41 | ** | ** | NS | NS | NS | NS |
GTSL | 12.00b | 8.10b | 6.84b | 11.80b | 9.10b | 8.28b |
Table 1 The analysis of fermentation quality and microbial communities of RTSL and GTSL silages
项目 Item | 表型 Phenotype | D15 | D30 | SEM | P值P value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 0.5%C | 1.0%C | CK | 0.5%C | 1.0%C | V | T | D | V×T | V×D | T×D | |||
干物质Dry matter (g·kg-1 FM) | RTSL | 417a | 429a | 417a | 417a | 424a | 419a | 7.37 | ** | NS | NS | NS | NS | NS |
GTSL | 383b | 372b | 374b | 389b | 379b | 372b | ||||||||
pH | RTSL | 5.12A | 5.07BC | 5.09B | 5.06C | 5.02D | 5.08BC | 0.04 | ** | ** | * | NS | ** | NS |
GTSL | 5.06AB | 5.01CD | 5.02CD | 5.08A | 5.00D | 5.04BC | ||||||||
乳酸Lactic acid (g·kg-1 DM) | RTSL | 15.20a | 10.20a | 9.51a | 13.60a | 10.90a | 9.54a | 2.41 | ** | ** | NS | NS | NS | NS |
GTSL | 12.00b | 8.10b | 6.84b | 11.80b | 9.10b | 8.28b |
项目 Item | 表型 Phenotype | D15 | D30 | SEM | P值P value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 0.5%C | 1.0%C | CK | 0.5%C | 1.0%C | V | T | D | V×T | V×D | T×D | |||
粗蛋白 Crude protein | RTSL | 12.1A | 10.7AB | 10.5B | 11.3AB | 11.2AB | 10.3B | 1.50 | ** | NS | NS | NS | NS | NS |
GTSL | 13.8A | 13.3A | 13.3A | 13.5A | 13.4A | 13.6A | ||||||||
真蛋白 True protein | RTSL | 9.93A | 9.11AB | 8.76AB | 8.87AB | 8.89AB | 8.34B | 0.85 | ** | NS | NS | NS | NS | NS |
GTSL | 10.20A | 9.68A | 10.10A | 9.77A | 10.00A | 10.30A | ||||||||
非蛋白氮 Non-protein nitrogen | RTSL | 2.15A | 1.60A | 1.79A | 2.45A | 2.36A | 2.00A | 0.88 | ** | NS | NS | NS | NS | NS |
GTSL | 3.55A | 3.21A | 3.19A | 3.71A | 3.40A | 3.31A | ||||||||
氨态氮 Ammonia | RTSL | 0.0323A | 0.0298A | 0.0330A | 0.0329A | 0.0310A | 0.0304A | 0.02 | ** | NS | NS | NS | NS | NS |
GTSL | 0.0712A | 0.0739A | 0.0606A | 0.0719A | 0.0746A | 0.0736A |
Table 2 The analysis of protein composition of RTSL and GTSL silages (% DM)
项目 Item | 表型 Phenotype | D15 | D30 | SEM | P值P value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 0.5%C | 1.0%C | CK | 0.5%C | 1.0%C | V | T | D | V×T | V×D | T×D | |||
粗蛋白 Crude protein | RTSL | 12.1A | 10.7AB | 10.5B | 11.3AB | 11.2AB | 10.3B | 1.50 | ** | NS | NS | NS | NS | NS |
GTSL | 13.8A | 13.3A | 13.3A | 13.5A | 13.4A | 13.6A | ||||||||
真蛋白 True protein | RTSL | 9.93A | 9.11AB | 8.76AB | 8.87AB | 8.89AB | 8.34B | 0.85 | ** | NS | NS | NS | NS | NS |
GTSL | 10.20A | 9.68A | 10.10A | 9.77A | 10.00A | 10.30A | ||||||||
非蛋白氮 Non-protein nitrogen | RTSL | 2.15A | 1.60A | 1.79A | 2.45A | 2.36A | 2.00A | 0.88 | ** | NS | NS | NS | NS | NS |
GTSL | 3.55A | 3.21A | 3.19A | 3.71A | 3.40A | 3.31A | ||||||||
氨态氮 Ammonia | RTSL | 0.0323A | 0.0298A | 0.0330A | 0.0329A | 0.0310A | 0.0304A | 0.02 | ** | NS | NS | NS | NS | NS |
GTSL | 0.0712A | 0.0739A | 0.0606A | 0.0719A | 0.0746A | 0.0736A |
项目 Item | 表型 Phenotype | D15 | D30 | SEM | P值P value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 0.5%C | 1.0%C | CK | 0.5%C | 1.0%C | V | T | D | V×T | V×D | T×D | |||
DPPH | RTSL | 247.3B | 258.8AB | 277.2A | 208.3C | 231.6CB | 276.0A | 55.3 | ** | ** | NS | NS | NS | NS |
GTSL | 125.0D | 164.6BC | 197.1A | 125.0D | 147.2CD | 187.9AB | ||||||||
ABTS | RTSL | 744.6AB | 761.7A | 764.1A | 730.0B | 724.2B | 731.4B | 42.2 | ** | NS | ** | NS | NS | NS |
GTSL | 656.8BC | 686.5AB | 703.2A | 663.9BC | 640.7C | 680.0AB | ||||||||
FRAP | RTSL | 177.3D | 245.3B | 290.2A | 155.9D | 213.1C | 286.5A | 68.9 | ** | ** | * | ** | NS | NS |
GTSL | 100.6CD | 172.1A | 120.5BC | 92.9D | 134.7B | 111.4BCD | ||||||||
TF | RTSL | 65.1A | 153.2C | 224.1D | 57.0A | 119.4B | 202.4D | 70.0 | ** | ** | ** | NS | NS | NS |
GTSL | 37.3E | 109.5C | 203.1A | 22.3F | 75.0D | 190.8B |
Table 3 The analysis of antioxidants activity of RTSL and GTSL silages (mg·g-1 DM)
项目 Item | 表型 Phenotype | D15 | D30 | SEM | P值P value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | 0.5%C | 1.0%C | CK | 0.5%C | 1.0%C | V | T | D | V×T | V×D | T×D | |||
DPPH | RTSL | 247.3B | 258.8AB | 277.2A | 208.3C | 231.6CB | 276.0A | 55.3 | ** | ** | NS | NS | NS | NS |
GTSL | 125.0D | 164.6BC | 197.1A | 125.0D | 147.2CD | 187.9AB | ||||||||
ABTS | RTSL | 744.6AB | 761.7A | 764.1A | 730.0B | 724.2B | 731.4B | 42.2 | ** | NS | ** | NS | NS | NS |
GTSL | 656.8BC | 686.5AB | 703.2A | 663.9BC | 640.7C | 680.0AB | ||||||||
FRAP | RTSL | 177.3D | 245.3B | 290.2A | 155.9D | 213.1C | 286.5A | 68.9 | ** | ** | * | ** | NS | NS |
GTSL | 100.6CD | 172.1A | 120.5BC | 92.9D | 134.7B | 111.4BCD | ||||||||
TF | RTSL | 65.1A | 153.2C | 224.1D | 57.0A | 119.4B | 202.4D | 70.0 | ** | ** | ** | NS | NS | NS |
GTSL | 37.3E | 109.5C | 203.1A | 22.3F | 75.0D | 190.8B |
项目 Item | DPPH | ABTS | FRAP |
---|---|---|---|
ABTS | 0.907** | ||
FRAP | 0.878** | 0.788** | |
TF | 0.639** | 0.467** | 0.576** |
Table 4 Pearson correlations between antioxidant activities (DPPH, ABTS, and FRAP) and total flavonoids for RTSL and GTSL silages
项目 Item | DPPH | ABTS | FRAP |
---|---|---|---|
ABTS | 0.907** | ||
FRAP | 0.878** | 0.788** | |
TF | 0.639** | 0.467** | 0.576** |
1 | Sohal R S, Allen R G. Oxidative stress as a causal factor in differentiation and aging: A unifying hypothesis. Experimental Gerontology, 1990, 25(6): 499-522. |
2 | Sa R L, Yang B, Ge G H S, et al. Effects of Gymnadenia conopsea polysaccharide extract on growth performance, antioxidant function and meat quality of house-fed mutton sheep under oxidative stress. Acta Veterinaria et Zootechnica Sinica, 2020, 51(9): 2187-2196. |
萨茹丽, 杨斌, 格根哈斯, 等. 手掌参多糖提取物对氧化应激舍饲肉羊生产性能、抗氧化机能及肉品质的影响. 畜牧兽医学报, 2020, 51(9): 2187-2196. | |
3 | Bao Y H. Effcets of extraneous antioxidant on growth performance, meat quality, antioxidant capabilities of broilers and finishing pigs. Beijing: China Agricultural University, 2014. |
鲍英慧. 外源抗氧化剂对肉仔鸡、肥育猪的生长性能、肉品质和体内抗氧化体系的影响. 北京: 中国农业大学, 2014. | |
4 | Fu Q Y, Shi L G, Zhou H L, et al. Effect of resveratrol on lleal mucosal morphology, antioxidant capacity, tight junction protein and inflammatory factor mRNA expression in oxidative stress piglets. Chinese Journal of Animal Nutrition, 2021, 33(2): 1163-1172. |
符清瑶, 施力光, 周汉林, 等. 白藜芦醇对氧化应激仔猪回肠黏膜形态、抗氧化能力、紧密连接蛋白及炎性因子mRNA表达的影响. 动物营养学报, 2021, 33(2): 1163-1172. | |
5 | Yi D, Hou Y Q. Research progress on natural plant bioactive compounds and swine intestinal health. Chinese Journal of Animal Nutrition, 2020, 32(10): 4518-4524. |
易丹, 侯永清. 天然植物活性成分与猪肠道健康的研究进展. 动物营养学报, 2020, 32(10): 4518-4524. | |
6 | Soest P J V. Nutritional ecology of the ruminant. Ithaca: Cornell University Press, 1994: 2552-2561. |
7 | Shen Y P. Chemical constituents of Toona sinensis and a new method for preparation of bioactive compounds of Chinese medicine based on biphasic hydrolysis. Zhenjiang: Jiangsu University, 2019. |
沈玉萍. 香椿的化学成分分析及基于双相水解的中药活性成分制备新方法的研究. 镇江: 江苏大学, 2019. | |
8 | Kong Y, Xu Y H, Zhang X, et al. Analysis of characteristic flavor of green Toona sinensis from different provenances. Science and Technology of Food Industry, 2020, 42(3): 1-11. |
孔宇, 许雅荟, 张旭, 等. 不同种源绿色型香椿特征风味的分析. 食品工业科技, 2020, 42(3): 1-11. | |
9 | Su S, Ni J W, Xu K, et al. Analysis and evaluation on feeding value of mature leaves of Toona sinensis. Forest Research, 2017, 30(5): 848-853. |
苏上, 倪建伟, 许可, 等. 香椿成熟复叶饲用价值分析评价研究. 林业科学研究, 2017, 30(5): 848-853. | |
10 | Guan P Y, Liu M L, Zhao M Y. Extraction, quantification and antioxidant function analysis of flavonoids in yound and old leaves of Toona sinensis.China Food Additives, 2020(11): 50-54. |
管培燕, 刘美玲, 赵明玉. 香椿嫩叶及老叶中黄酮类物质的提取定量及抗氧化功能分析. 中国食品添加剂, 2020(11): 50-54. | |
11 | Yang S, Xu Y Q, Xing Y Y, et al. Research advances on effects of pant-based flavonoids on immunue and antioxidant function in animals. Chinese Journal of Animal Nutrition, 2019, 31(7): 2958-2964. |
杨硕, 徐元庆, 邢媛媛, 等. 植物源黄酮类化合物对动物免疫和抗氧化功能影响的研究进展. 动物营养学报, 2019, 31(7): 2958-2964. | |
12 | Broberg A, Jacobsson K, Ström K, et al. Metabolite profiles of lactic acid bacteria in grass silage. Applied and Environmental Microbiology, 2007, 73(17): 5547-5552. |
13 | Xu D, Ding W, Ke W, et al. Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri. Frontiers in Microbiology, 2019, 9: 3299. |
14 | Mcdonald P, Henderson A R, Heron S J E. The biochemistry of silage (Second Edition). Bucks, UK: Chalcombe Publication, 1991. |
15 | Wang C, Wang Y, Zhou W, et al. Effect of Lactobacillus plantarum (LP) and moisture on feed quality and tannin content of Moringa oleifera leaf silage. Acta Prataculturae Sinica, 2019, 28(6): 109-118. |
王成, 王益, 周玮, 等. 植物乳杆菌和含水量对辣木叶青贮品质和单宁含量的影响. 草业学报, 2019, 28(6): 109-118. | |
16 | Mcdonald P, Henderson A R. Determination of water-soluble carbohydrates in grass. Journal of the Science of Food & Agriculture, 2010, 15(6): 395-398. |
17 | Licitra G, Hernandez T M, Soest P J V. Standardization of procedures for nitrogen fractionation of ruminant feeds. Animal Feed Science & Technology, 1996, 57(4): 347-358. |
18 | He L, Zhou W, Wang C, et al. Effect of cellulase and Lactobacillus casei on ensiling characteristics, chemical composition, antioxidant activity, and digestibility of mulberry leaf silage. Journal of Dairy Science, 2019, 102(11): 9919-9931. |
19 | Geng Y H, Xu X Q, Ni J W, et al. Effect of harvest time on forage quality of Toona sinensis. Forest Research, 2019, 32(2): 145-151. |
耿涌杭, 许新桥, 倪建伟, 等. 不同采收时期对香椿饲用品质的影响. 林业科学研究, 2019, 32(2): 145-151. | |
20 | Song J M, He Z R, Zhao S H, et al. Research progress on extraction and biological activity of flavonoids from Toona sinensis leaves. Food Industry, 2019, 40(11): 259-262. |
宋继敏, 贺志荣, 赵三虎, 等. 香椿叶黄酮提取工艺及其生物活性研究进展. 食品工业, 2019, 40(11): 259-262. | |
21 | Liu H, Tsai Y, Chang S. Toona sinensis leaf extract inhibits lipid accumulation through up-regulation of genes involved in lipolysis and fatty acid oxidation in adipocytes. Journal of Agricultural and Food Chemistry, 2014, 62(25): 5887-5896. |
22 | Song G, Lin J, Yang Y F. Effects of different kinds of antioxidants on fat oxidation of piglet concentrated feed. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(2): 223-228. |
宋鸽, 林靖, 杨玉芬. 不同种类抗氧化剂对乳猪浓缩饲料脂肪氧化的影响. 福建农林大学学报(自然科学版), 2018, 47(2): 223-228. | |
23 | Tian J H, Luo J, Zhao D Q. Research progress on the application of chromium, chromium and antioxidants in poultry nutrition. China Feed, 2018(5): 84-90. |
田建华, 罗峻, 赵冬琴. 铬及铬与抗氧化剂在家禽营养中应用的研究进展. 中国饲料, 2018(5): 84-90. | |
24 | Zhao E L, Feng D Y, Wu Y F, et al. Study on antioxidant and antibacterial activities of extracts from Toona sinensis leaves. Journal of Henan University of Technology (Natural Science Edition), 2013, 34(06): 69-72. |
赵二劳, 冯冬艳, 武宇芳, 等. 香椿叶提取物抗氧化及抑菌活性研究. 河南工业大学学报(自然科学版), 2013, 34(06): 69-72. | |
25 | Tao L, Yu Z. The dynamics of Ceratoides arborescens fermentation quality in the precess of ensiing. Acta Prataculturae Sinica, 2009, 18(6): 122-127. |
陶莲, 玉柱. 华北驼绒藜青贮贮藏过程中发酵品质的动态变化. 草业学报, 2009, 18(6): 122-127. | |
26 | Wu J G, Peng W, Yi J, et al. Chemical composition, antimicrobial activity against Staphylococcus aureus and a pro-apoptotic effect in SGC-7901 of the essential oil from Toona sinensis (A. Juss.) Roem. leaves. Journal of Ethnopharmacology, 2014, 154(1): 198-205. |
27 | Wang C, He L, Xing Y, et al. Effects of mixing Neolamarckia cadamba leaves on fermentation quality, microbial community of high moisture alfalfa and stylo silage. Microbial Biotechnology, 2019, 12(5): 869-878. |
28 | Boots A W, Haenen G R, den Hartog G J, et al. Oxidative damage shifts from lipid peroxidation to thiol arylation by catechol-containing antioxidants. Biochimica et Biophysica Acta, 2002, 1583(3): 279-284. |
[1] | Shi-yu ZOU, Si-kui CHEN, Qi-yuan TANG, Dong CHEN, Yuan-wei CHEN, Pan DENG, Xu-lai HUANG, Fu-qiang LI. Effects of silage additives on quality and in vitro rumen fermentation characteristics of first season ratoon rice whole silage [J]. Acta Prataculturae Sinica, 2021, 30(7): 122-132. |
[2] | LIU Yan-Fang, QIU Hao-Ri, YU Xiong, SUN Guo-Qing, MA Jian, ZHANG De-Long, SENBATI Heilimubuick. Effects of addition of lactic acid bacteria, glucose, and formic acid on the quality of Amaranthus hypochondriacus silage [J]. Acta Prataculturae Sinica, 2017, 26(9): 214-220. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||