Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (6): 146-156.DOI: 10.11686/cyxb2022276
Previous Articles Next Articles
Ting CUI(), Yong WANG, Hui-ling MA()
Received:
2022-06-28
Revised:
2022-09-28
Online:
2023-06-20
Published:
2023-04-21
Contact:
Hui-ling MA
Ting CUI, Yong WANG, Hui-ling MA. Analysis of the key exogenous IAA-induced gene expression levels and metabolic pathways involved in long-distance translocation of Cd in Poa pratensis[J]. Acta Prataculturae Sinica, 2023, 32(6): 146-156.
基因ID Gene ID | 上游引物Forward primers | 下游引物Reverse primers |
---|---|---|
TRINITY_DN115423_c2_g1 | GCACATGTTCGTCGTCAAGG | AATCTCCTTCTTGTCCGGCG |
TRINITY_DN145731_c0_g2 | AAGAGCCATTGCCGTACTCC | TGGTCGTGCTTGGTCTCAAA |
TRINITY_DN163800_c1_g2 | TCTCGAGATCTGACCTGGCA | GTTCGTCGCCACTTGGAGTA |
TRINITY_DN145701_c0_g1 | CATCACGTCTGTGAACCCCA | GTCCGTGTTTGGGCTGTTTC |
TRINITY_DN141021_c0_g2 | CAACACATTCCCACCCTCCA | CAGCTGGATGTTCACCGGAT |
TRINITY_DN142220_c1_g2 | GACTGGCCAACTCAGACCTC | CGACCGTGACCTTCATAGGG |
TRINITY_DN135644_c0_g2 | TTCTACCGTTGCAGCTTCGT | TGGTGCCGTAGATGTCACAC |
TRINITY_DN155113_c1_g1 | CTTCACTCACTGCCAAACGC | GAGGCAAAAGACTGCTGCAC |
TRINITY_DN72438_c0_g1 | GACCATTGTCACCGGTCGTA | ATCTCCCTGGTTGCGGAATG |
TRINITY_DN168047_c0_g1 | ATCCTAGCGCCTTCATGCTC | GTACTTGCCGACACCAGTGA |
TRINITY_DN139972_c1_g1 | TGGCAGGCCCTACCTAGATT | TCCCAAAGCTCCTGCTTGTC |
TRINITY_DN167060_c4_g1 | AGGGCCGCTACTAAATACGC | CAGCACCTGAGCTTTCCTGA |
TRINITY_DN163988_c1_g1 | TGCAATATCCCAAGCAGCCA | CAGTCTTTAGCCCCTCACCG |
TRINITY_DN165172_c2_g1 | CAGCAGGCCCTGTCATTGTA | CGGTACCGGAACACGAAGAA |
TRINITY_DN165077_c2_g1 | CGGCGATTCTCTACCTCGTC | GCGTGGAATCGTTCTTGAGC |
Table 1 Sequences of forward and reverse primer of 15 randomly selected genes
基因ID Gene ID | 上游引物Forward primers | 下游引物Reverse primers |
---|---|---|
TRINITY_DN115423_c2_g1 | GCACATGTTCGTCGTCAAGG | AATCTCCTTCTTGTCCGGCG |
TRINITY_DN145731_c0_g2 | AAGAGCCATTGCCGTACTCC | TGGTCGTGCTTGGTCTCAAA |
TRINITY_DN163800_c1_g2 | TCTCGAGATCTGACCTGGCA | GTTCGTCGCCACTTGGAGTA |
TRINITY_DN145701_c0_g1 | CATCACGTCTGTGAACCCCA | GTCCGTGTTTGGGCTGTTTC |
TRINITY_DN141021_c0_g2 | CAACACATTCCCACCCTCCA | CAGCTGGATGTTCACCGGAT |
TRINITY_DN142220_c1_g2 | GACTGGCCAACTCAGACCTC | CGACCGTGACCTTCATAGGG |
TRINITY_DN135644_c0_g2 | TTCTACCGTTGCAGCTTCGT | TGGTGCCGTAGATGTCACAC |
TRINITY_DN155113_c1_g1 | CTTCACTCACTGCCAAACGC | GAGGCAAAAGACTGCTGCAC |
TRINITY_DN72438_c0_g1 | GACCATTGTCACCGGTCGTA | ATCTCCCTGGTTGCGGAATG |
TRINITY_DN168047_c0_g1 | ATCCTAGCGCCTTCATGCTC | GTACTTGCCGACACCAGTGA |
TRINITY_DN139972_c1_g1 | TGGCAGGCCCTACCTAGATT | TCCCAAAGCTCCTGCTTGTC |
TRINITY_DN167060_c4_g1 | AGGGCCGCTACTAAATACGC | CAGCACCTGAGCTTTCCTGA |
TRINITY_DN163988_c1_g1 | TGCAATATCCCAAGCAGCCA | CAGTCTTTAGCCCCTCACCG |
TRINITY_DN165172_c2_g1 | CAGCAGGCCCTGTCATTGTA | CGGTACCGGAACACGAAGAA |
TRINITY_DN165077_c2_g1 | CGGCGATTCTCTACCTCGTC | GCGTGGAATCGTTCTTGAGC |
样本Simples | 原始序列数量Raw reads | 清洁序列数量Valid reads | Q20 (%) | Q30 (%) | GC (%) |
---|---|---|---|---|---|
Cd_1 | 47397864 | 46440412 | 98.46 | 94.79 | 52.51 |
Cd_2 | 50450066 | 49185876 | 98.54 | 95.08 | 52.75 |
Cd_3 | 51288708 | 50076930 | 98.49 | 94.94 | 52.78 |
Cd+IAA_1 | 47775358 | 46702260 | 98.51 | 94.97 | 52.66 |
Cd+IAA_2 | 52741792 | 51346028 | 98.46 | 94.89 | 52.86 |
Cd+IAA_3 | 54986698 | 53830218 | 98.53 | 95.05 | 52.72 |
CK_1 | 52312058 | 51101542 | 98.48 | 94.87 | 52.20 |
CK_2 | 44140396 | 43228210 | 98.52 | 94.97 | 52.03 |
CK_3 | 39566018 | 38686352 | 98.43 | 94.68 | 51.55 |
IAA_1 | 42275074 | 41366510 | 98.51 | 95.00 | 52.46 |
IAA_2 | 47238292 | 46138970 | 98.51 | 94.96 | 52.58 |
IAA_3 | 54196830 | 52731944 | 98.51 | 94.96 | 52.27 |
Table 2 Statistics of RNA-seq results
样本Simples | 原始序列数量Raw reads | 清洁序列数量Valid reads | Q20 (%) | Q30 (%) | GC (%) |
---|---|---|---|---|---|
Cd_1 | 47397864 | 46440412 | 98.46 | 94.79 | 52.51 |
Cd_2 | 50450066 | 49185876 | 98.54 | 95.08 | 52.75 |
Cd_3 | 51288708 | 50076930 | 98.49 | 94.94 | 52.78 |
Cd+IAA_1 | 47775358 | 46702260 | 98.51 | 94.97 | 52.66 |
Cd+IAA_2 | 52741792 | 51346028 | 98.46 | 94.89 | 52.86 |
Cd+IAA_3 | 54986698 | 53830218 | 98.53 | 95.05 | 52.72 |
CK_1 | 52312058 | 51101542 | 98.48 | 94.87 | 52.20 |
CK_2 | 44140396 | 43228210 | 98.52 | 94.97 | 52.03 |
CK_3 | 39566018 | 38686352 | 98.43 | 94.68 | 51.55 |
IAA_1 | 42275074 | 41366510 | 98.51 | 95.00 | 52.46 |
IAA_2 | 47238292 | 46138970 | 98.51 | 94.96 | 52.58 |
IAA_3 | 54196830 | 52731944 | 98.51 | 94.96 | 52.27 |
Fig.5 Exogenous IAA-induced DEGs related to low temperature responding, response to Cd2+, lipid metabolism, signal transduction, lignin biosynthesis, and response to virus under Cd stress
1 | Zhou L, Xiao F, Xiao H, et al. Effects of lime on cadmium accumulation of double-season rice in paddy fields with different cadmium pollution degrees. Scientia Agricultura Sinica, 2021, 54(4): 780-791. |
周亮, 肖峰, 肖欢, 等. 施用石灰降低污染稻田上双季稻镉积累的效果. 中国农业科学, 2021, 54(4): 780-791. | |
2 | Wu X, Tian H, Li L, et al. Higher Cd-accumulating oilseed rape has stronger Cd tolerance due to stronger Cd fixation in pectin and hemicellulose and higher Cd chelation. Environmental Pollution, 2021, 285: 117218. |
3 | Zhang Z H, Zhou T, Tang T J, et al. A multiomics approach reveals the pivotal role of subcellular reallocation in determining rapeseed resistance to cadmium toxicity. Journal of Experimental Botany, 2019, 70(19): 5437-5455. |
4 | Li Z, Ma Z, van der Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 2014, 468/469: 843-853. |
5 | Guo Z C, Zhou B H, Zhao K, et al. Morphological characteristics of Cd and its pollution assessment in farmland soils along the middle and lower reaches of the Yangtze River. Journal of Anqing Normal University (Natural Science Edition), 2021, 27(1): 96-101. |
郭展翅, 周葆华, 赵宽, 等. 长江中下游某地区农田Cd形态特征及污染评价. 安庆师范大学学报(自然科学版), 2021, 27(1): 96-101. | |
6 | Chen J. Effects of exogenous auxins on growth and physiological characteristics of maize seedlings under cadmium stress. Chongqing: Southwest University, 2016. |
陈晶. 生长素类物质对镉胁迫下玉米幼苗生长及生理特性的影响. 重庆: 西南大学, 2016. | |
7 | Demecsová L, Tamás L. Reactive oxygen species, auxin and nitric oxide in metal-stressed roots: toxicity or defence. BioMetals, 2019, 32(5): 717-744. |
8 | Pasternak T, Potters G, Caubergs R, et al. Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level. Journal of Experimental Botany, 2005, 56(418): 1991-2001. |
9 | Chaoui A, El Ferjani E. Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. Comptes Rendus Biologies, 2005, 328(1): 23-31. |
10 | Wang K, Yu H, Zhang X, et al. A transcriptomic view of cadmium retention in roots of cadmium-safe rice line (Oryza sativa L.). Journal of Hazardous Materials, 2021, 418: 126379. |
11 | Bočová B, Huttová J, Mistrík I, et al. Auxin signalling is involved in cadmium-induced glutathione-S-transferase activity in barley root. Acta Physiologiae Plantarum, 2013, 35(9): 2685-2690. |
12 | Ning R Y, Liu N, Cheng H Y, et al. Effects of microplastics,cadmium and their combination on the growth and cadmium accumulation of hyperaccumulators. Acta Scientiae Circumstantiae, 2022, 42(6): 415-425. |
宁瑞艳, 刘娜, 程红艳, 等. 微塑料和镉及其复合对超富集植物生长和富集镉的影响. 环境科学学报, 2022, 42(6):415-425. | |
13 | Wu P, Zhang X F, Gao B, et al. Effects of polyethylene on Cd accumulation of hyperaccumulator Solanum photeinocarpum. Environmental Science & Technology, 2022, 45(1): 174-181. |
吴萍, 张杏锋, 高波, 等. 微塑料对超富集植物少花龙葵Cd累积的影响. 环境科学与技术, 2022, 45(1): 174-181. | |
14 | Yang Y, Wang C J, Guo J H, et al. The effects of cadmium stress on seed germination and seedling growth of Bidens pilosa (L.) and Pennisetum alopecuroides(L.). Journal of Yunnan Normal University(Natural Sciences Edition), 2022, 42(1): 58-63. |
杨云, 王晨骄, 郭嘉航, 等. 镉胁迫对鬼针草和狼尾草种子萌发及幼苗生长的影响. 云南师范大学学报(自然科学版), 2022, 42(1): 58-63. | |
15 | Xu P X. Studies on cadmium tolerance and detoxification in tall fescue and Kentucky bluegrass. Shanghai: Shanghai Jiao Tong University, 2014. |
徐佩贤. 高羊茅和草地早熟禾对镉的耐受能力和解毒机制研究. 上海: 上海交通大学, 2014. | |
16 | Xian J, Wang Y, Niu K, et al. Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa pratensis. Chemosphere, 2020, 250: 126158. |
17 | Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal, 2011, 17(1): 10-12. |
18 | Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652. |
19 | Kallberg Y, Persson B. KIND-a non-redundant protein database. Bioinformatics, 1999, 15(3): 260-261. |
20 | Ashburner M, Ball C A, Blake J A, et al. Gene Ontology: tool for the unification of biology. Nature Genetics, 2000, 25(1): 25-29. |
21 | Bairoch A, Boeckmann B. The SWISS-PROT protein sequence data bank. Nucleic Acids Research, 1991, 19(Suppl): 2247-2249. |
22 | Ogata H, Goto S, Sato K, et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 1999, 27(1): 29-34. |
23 | Huerta-Cepas J, Szklarczyk D, Heller D, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 2019, 47(D1): 309-314. |
24 | Niu K, Zhang R, Zhu R, et al. Cadmium stress suppresses the tillering of perennial ryegrass and is associated with the transcriptional regulation of genes controlling axillary bud outgrowth. Ecotoxicology and Environmental Safety, 2021, 212: 112002. |
25 | Zhao F Y, Hu F, Zhang S Y, et al. MAPKs regulate root growth by influencing auxin signaling and cell cycle-related gene expression in cadmium-stressed rice. Environmental Science and Pollution Research, 2013, 20(8): 5449-5460. |
26 | Ray D, Ghosh A, Mustafi S B, et al. Plant stress response: Hsp70 in the spotlight//Asea A, Kaur P, Calderwood S K. Heat shock proteins and plants. Cham: Springer International Publishing, 2016: 123-147. |
27 | Chen P, Song Y, Liu X, et al. LncRNA PMAT-PtoMYB46 module represses PtoMATE and PtoARF2 promoting Pb2+ uptake and plant growth in poplar. Journal of Hazardous Materials, 2022, 433: 128769. |
28 | Yang L P, Zhu J, Wang P, et al. Effect of Cd on growth, physiological response, Cd subcellular distribution and chemical forms of Koelreuteria paniculata. Ecotoxicology and Environmental Safety, 2018, 160: 10-18. |
29 | Zhu X F, Lei G J, Jiang T, et al. Cell wall polysaccharides are involved in P-deficiency-induced Cd exclusion in Arabidopsis thaliana. Planta, 2012, 236(4): 989-997. |
30 | Finger-Teixeira A, Lucio Ferrarese M de L, Ricardo Soares A, et al. Cadmium-induced lignification restricts soybean root growth. Ecotoxicology and Environmental Safety, 2010, 73(8): 1959-1964. |
31 | Elobeid M, Göbel C, Feussner I, et al. Cadmium interferes with auxin physiology and lignification in poplar. Journal of Experimental Botany, 2012, 63(3): 1413-1421. |
32 | Loix C, Huybrechts M, Vangronsveld J, et al. Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Frontiers in Plant Science, 2017, 8: 1867. |
33 | Lv Z Q, Ren D D, Zhou H, et al. Cloning and expression of HHT gene in ‘Huanghua’ pear and its bud mutant ‘Lvhuanghua’ pear (Pyrus pyrifolia Nakai). Acta Botanica Boreali-Occidentalia Sinica, 2016, 36(6): 1105-1109. |
吕照清, 任丹丹, 周贺, 等. ‘黄花’梨及其芽变‘绿黄花’梨HHT基因克隆与表达分析. 西北植物学报, 2016, 36(6): 1105-1109. | |
34 | Wang Y, Cui T, Niu K, et al. Comparison and characterization of oxidation resistance and carbohydrate content in Cd-tolerant and -sensitive kentucky bluegrass under Cd stress. Agronomy, 2021, 11(11): 2358. |
35 | Zhang S, Wang S, Han S F, et al. The research progress of glutaredoxin in plants. Acta Agriculturae Boreali-Sinica, 2021, 36(S1): 202-209. |
张硕, 王硕, 韩胜芳, 等. 植物中谷氧还蛋白研究进展. 华北农学报, 2021, 36(S1): 202-209. | |
36 | Qiao X R, Zhang J Y. Research progress on GPX in plants. Biotechnology Bulletin, 2016, 32(9): 7-13. |
乔新荣, 张继英. 植物谷胱甘肽过氧化物酶(GPX)研究进展. 生物技术通报, 2016, 32(9): 7-13. |
[1] | Lu-juan SUN, Jian-jun HE, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Ke YANG, Bao-chun LI, Xiao-le MA, Xun-wu SHANG, Ya-xiong MENG, Hua-jun WANG. Development of SSR markers based on full-length transcriptome sequencing and genetic diversity analysis of Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2022, 31(8): 199-210. |
[2] | Jing ZHOU, Si-qi CHEN, Wen-jiao SHI, Fu-lin YANG, Hui LIN, Zhan-xi LIN. Transcriptome analyses of functional genes in young leaves and roots of Giant Juncao [J]. Acta Prataculturae Sinica, 2021, 30(2): 143-155. |
[3] | SHU Xin-yue, JIANG Bo, MA Li, ZHENG Ai-ping. Transcriptome analysis of Tilletia horrida at different infection time points [J]. Acta Prataculturae Sinica, 2020, 29(9): 190-202. |
[4] | LIU Jian-xin, OU Xiao-bin, WANG Jin-cheng, LIU Rui-rui, JIA Hai-yan. Physiological response of naked oat seedlings to exogenous hydrogen peroxide (H2O2) under cadmium stress [J]. Acta Prataculturae Sinica, 2020, 29(1): 125-134. |
[5] | QIAN Chen, LIU Zhi-wei, ZHONG Xiao-xian, WU Juan-zi, ZHANG Jian-li, PAN Yu-mei. Transcriptomic analysis of the self-incompatibility mechansim in Paspalum vaginatum by comparison with an artificial self-compatible mutant [J]. Acta Prataculturae Sinica, 2019, 28(5): 132-142. |
[6] | GONG Wen-long, WANG Zan, ZHAO Gui-qin, MA Lin, WEI Bao, GONG Pan, LIU Xi-qiang. Development of EST-SSR molecular markers and analysis of genetic diversity of erect milk vetch (Astragalus adsurgens) [J]. Acta Prataculturae Sinica, 2019, 28(11): 147-158. |
[7] | CHENG Qi-ming, GE Gen-tu, SA Duo-wen, WANG Zhi-jun, FAN Wen-qiang, BU Zhen-kun, SI Qiang, LI Jun-feng, LU Juan, JIA Yu-shan. Transcriptome analyses provide insights into differences in nutritional quality among different alfalfa varieties [J]. Acta Prataculturae Sinica, 2019, 28(10): 199-208. |
[8] | WU Juan-zi, QIAN Chen, LIU Zhi-wei, PAN Yu-mei, ZHONG Xiao-xian. De novo transcriptomic analysis for lignin synthesis in Cenchrus purpureus using RNA-seq [J]. Acta Prataculturae Sinica, 2019, 28(1): 150-161. |
[9] | SONG Ji-xuan, LÜ Jun, ZONG Xue-feng, HE Xiu-juan, XU Yu, WU Xiao, WANG San-gen. Effects of ALA application on plant growth, hormone levels, and transcriptome in Leymus chinensis under drought stress [J]. Acta Prataculturae Sinica, 2018, 27(7): 73-83. |
[10] | XUE Bo-han, LI Na, SONG Gui-long, LI Shi-gang, PUYANG Xue-hua, LI Jin-bo. Effects of exogenous citric, malic and oxalic acids on the tolerance and enrichment efficiency of Elymus dahuricus under cadmium-stress [J]. Acta Prataculturae Sinica, 2018, 27(6): 128-136. |
[11] | ZHU Yong-qun, PENG Dan-dan, LIN Chao-wen, NIE Gang, XU Wen-zhi, HUANG Lin-kai, LUO Fu-xiang, PENG Jian-hua, ZHANG Xin-quan. Development of SSR markers based on transcriptome sequence and analysis of genetic diversity in Sorghum sudanense [J]. Acta Prataculturae Sinica, 2018, 27(5): 178-189. |
[12] | ZHUANG Li-li, WANG Jian, YANG Zhi-min. Transcriptome-wide identification and expression analysis of HD-Zip I transcription factors in Festuca arundinacea [J]. Acta Prataculturae Sinica, 2018, 27(3): 67-77. |
[13] | ZHAO Jin-bo, HOU Xiang-yang, WU Zi-nian, REN Wei-bo, HU Ning-ning, GUO Feng-hui, MA Wen-jing. Transcriptome analysis of Leymus chinensis under different mowing intensities [J]. Acta Prataculturae Sinica, 2018, 27(2): 105-116. |
[14] | XIN Jian-pan, LI Wen-ming, QI Xi, TIAN Ru-nan. Effects of Cd on antixoidant enzyme activities, and leaf photosynthetic and fluorescence characteristics in Pontederia cordata [J]. Acta Prataculturae Sinica, 2018, 27(10): 23-34. |
[15] | LI Xiao-Dong, WANG Xiao-Li, CHEN Xi, CAI Lu, ZENG Qing-Fei, SHU Jian-Hong, CAI Yi-Ming. Transcriptome profiling analysis of the phosphate-solubilizing mechanism of the white clover rhizosphere strain RW8 [J]. Acta Prataculturae Sinica, 2017, 26(8): 168-179. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||