Acta Prataculturae Sinica ›› 2023, Vol. 32 ›› Issue (12): 104-114.DOI: 10.11686/cyxb2023060
Yun-hao LI1(), Zhong-xian LI2, Shuai FU1, Zhong-xue ZHANG1, Shi-qin MAO1, Qi-sheng FENG1, Tian-gang LIANG1(), Yan-zhong LI1
Received:
2023-03-02
Revised:
2023-05-26
Online:
2023-12-20
Published:
2023-10-18
Contact:
Tian-gang LIANG
Yun-hao LI, Zhong-xian LI, Shuai FU, Zhong-xue ZHANG, Shi-qin MAO, Qi-sheng FENG, Tian-gang LIANG, Yan-zhong LI. Identification of cultivated alfalfa diseases based on AlexNet[J]. Acta Prataculturae Sinica, 2023, 32(12): 104-114.
分组Group | 苜蓿病害 Alfalfa disease | 样本 Samples (No.) | 清洗后样本 Samples after cleaning (No.) |
---|---|---|---|
1 | 锈病U. striatus | 98 | 80 |
2 | 霜霉病P. cubensis | 200 | 163 |
3 | 白粉病P. fusca | 148 | 95 |
4 | 黑茎叶斑病P. medicaginis | 197 | 174 |
5 | 尾孢黑茎叶斑病C. medicaginis | 225 | 203 |
6 | 褐斑病C. beticola | 405 | 361 |
7 | 黄斑病L. medicaginis | 78 | 65 |
8 | 葡柄霉叶斑病S. botryosum | 71 | 64 |
9 | 小光壳叶斑病L. briosiana | 302 | 260 |
10 | 壳针孢叶斑病S. medicaginis | 173 | 155 |
11 | 炭疽病B. anthracis | 284 | 213 |
12 | 黄萎病Cyanosis | 131 | 89 |
13 | 病毒病Mosaicvirus | 118 | 92 |
14 | 健康苜蓿Healthy alfalfa | 1020 | 908 |
Table 1 Alfalfa disease dataset
分组Group | 苜蓿病害 Alfalfa disease | 样本 Samples (No.) | 清洗后样本 Samples after cleaning (No.) |
---|---|---|---|
1 | 锈病U. striatus | 98 | 80 |
2 | 霜霉病P. cubensis | 200 | 163 |
3 | 白粉病P. fusca | 148 | 95 |
4 | 黑茎叶斑病P. medicaginis | 197 | 174 |
5 | 尾孢黑茎叶斑病C. medicaginis | 225 | 203 |
6 | 褐斑病C. beticola | 405 | 361 |
7 | 黄斑病L. medicaginis | 78 | 65 |
8 | 葡柄霉叶斑病S. botryosum | 71 | 64 |
9 | 小光壳叶斑病L. briosiana | 302 | 260 |
10 | 壳针孢叶斑病S. medicaginis | 173 | 155 |
11 | 炭疽病B. anthracis | 284 | 213 |
12 | 黄萎病Cyanosis | 131 | 89 |
13 | 病毒病Mosaicvirus | 118 | 92 |
14 | 健康苜蓿Healthy alfalfa | 1020 | 908 |
项目 Item | 分组Group | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
训练输入尺寸Training input size (pixels) | 128×128 | 224×224 | 256×256 | 512×512 |
总体识别精度Overall recognition accuracy (%) | 68.2 | 71.3 | 70.2 | 72.5 |
Table 2 Overall recognition accuracy of group training for 13 kinds of diseases
项目 Item | 分组Group | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
训练输入尺寸Training input size (pixels) | 128×128 | 224×224 | 256×256 | 512×512 |
总体识别精度Overall recognition accuracy (%) | 68.2 | 71.3 | 70.2 | 72.5 |
项目 Item | 分组Group | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
训练输入尺寸Training input size (pixels) | 128×128 | 224×224 | 256×256 | 512×512 |
总体识别精度Overall recognition accuracy (%) | 81.6 | 82.5 | 83.3 | 83.7 |
Table 3 Overall recognition accuracy of group training for five kinds of diseases (low resolution group)
项目 Item | 分组Group | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
训练输入尺寸Training input size (pixels) | 128×128 | 224×224 | 256×256 | 512×512 |
总体识别精度Overall recognition accuracy (%) | 81.6 | 82.5 | 83.3 | 83.7 |
项目 Item | 分组Group | ||
---|---|---|---|
1 | 2 | 3 | |
训练输入尺寸Training input size (pixels) | 768×768 | 1200×1200 | 1500×1500 |
总体识别精度Overall recognition accuracy (%) | 80.6 | 92.3 | 87.2 |
Table 4 Overall recognition accuracy of group training for five kinds of diseases (high resolution group)
项目 Item | 分组Group | ||
---|---|---|---|
1 | 2 | 3 | |
训练输入尺寸Training input size (pixels) | 768×768 | 1200×1200 | 1500×1500 |
总体识别精度Overall recognition accuracy (%) | 80.6 | 92.3 | 87.2 |
评价指标 Evaluating indicator | 识别Recognize | |
---|---|---|
正确Correct | 错误Incorrect | |
健康苜蓿Healthy alfalfa | 101 | 0 |
褐斑病C. beticola | 30 | 5 |
霜霉病P.cubensis | 17 | 1 |
炭疽病B. anthracis | 22 | 2 |
黑茎叶斑病P. medicaginis | 19 | 3 |
小光壳叶斑病L.briosiana | 25 | 4 |
Table 5 Identification accuracy of the optimal model on the test set
评价指标 Evaluating indicator | 识别Recognize | |
---|---|---|
正确Correct | 错误Incorrect | |
健康苜蓿Healthy alfalfa | 101 | 0 |
褐斑病C. beticola | 30 | 5 |
霜霉病P.cubensis | 17 | 1 |
炭疽病B. anthracis | 22 | 2 |
黑茎叶斑病P. medicaginis | 19 | 3 |
小光壳叶斑病L.briosiana | 25 | 4 |
1 | Wang X, Ma Y X, Li J. Fat-breeding effects of full-grazing turkey on regressed grassland. Pratacultural Science, 2003, 20(10): 39-41. |
王鑫, 马永祥, 李娟. 紫花苜蓿营养成分及主要生物学特性. 草业科学, 2003, 20(10): 39-41. | |
2 | Pan X, Gao Y, Liu B, et al. Current situation and prospect of alfalfa industry. Journal of Green Science and Technology, 2017(13): 104-107. |
潘霞, 高永, 刘博, 等. 苜蓿产业发展现状及前景展望. 绿色科技, 2017(13): 104-107. | |
3 | Chen S K, Zhou Z X, Chen P, et al. Study on incidence of diseases in varieties of alfalfa grown in Hulunbuir City. Journal of Inner Mongolia Minzu University (Natural Sciences), 2017, 32(6): 521-525. |
陈申宽, 周忠学, 陈鹏, 等. 呼伦贝尔市岭东苜蓿品种主要苜蓿病害研究. 内蒙古民族大学学报(自然科学版), 2017, 32(6): 521-525. | |
4 | Chen J, Guo Z W, Pan C Q, et al. Research status of alfalfa diseases, insect pests and weeds. Journal of Grassland and Forage Science, 2022(1): 1-14. |
陈婧, 郭子雯, 潘春清, 等. 苜蓿病虫草害研究现状. 草学, 2022(1): 1-14. | |
5 | Nan Z B. Diseases of alfalfa in my country and their integrated control system. Animal Science and Veterinary Medicine, 2001, 18(4): 81-84. |
南志标. 我国的苜蓿病害及其综合防治体系. 动物科学与动物医学, 2001, 18(4): 81-84. | |
6 | Wei H A. Alfalfa disease summary. Grassland and Turf, 1986(2): 37. |
魏宏安. 苜蓿病害概要. 草原与牧草, 1986(2): 37. | |
7 | Yuan Q H. Advances in alfalfa diseases in China. Plant Protection, 2007, 33(1): 6-10. |
袁庆华. 我国苜蓿病害研究进展. 植物保护, 2007, 33(1): 6-10. | |
8 | Han Y J, Liu X P, Du G M, et al. Leaf disease investigation and pathogen identification of alfalfa in Daqing area. Contemporary Animal Husbandry, 2013(4): 53-55. |
韩玉静, 刘香萍, 杜广明, 等. 大庆地区紫花苜蓿叶部病害调查和病原菌鉴定. 当代畜牧, 2013(4): 53-55. | |
9 | Hou T J. Occurrence status and control strategies of alfalfa diseases in China. Inner Mongolia Prataculture, 1994(Z2): 4-8. |
侯天爵. 我国苜蓿病害发生现状及防治对策. 内蒙古草业, 1994(Z2): 4-8. | |
10 | Lv X L, Ai L, Yin Q F, et al. Investigation and research on alfalfa downy mildew. Journal of Gansu Agricultural University, 1976(3): 39-42. |
吕新龙, 艾里, 殷启夫, 等. 苜蓿霜霉病的调查研究. 甘肃农业大学学报, 1976(3): 39-42. | |
11 | Lu H T, Zhang Q C. Applications of deep convolutional neural network in computer vision. Journal of Data Acquisition and Processing, 2016, 31(1): 1-17. |
卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述. 数据采集与处理, 2016, 31(1): 1-17. | |
12 | Gu Y L, Zong X X. Survey of object detection based on deep learning. Acta Electronica Sinica, 2022, 48(6): 1230-1239. |
谷永立, 宗欣欣. 基于深度学习的目标检测研究综述. 现代信息科技, 2022, 48(6): 1230-1239. | |
13 | Zhang H, Wang K F, Wang F Y. Advances and perspectives on applications of deep learning in visual object detection. Acta Automatica Sinica, 2017, 43(8): 1289-1305. |
张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望. 自动化学报, 2017, 43(8): 1289-1305. | |
14 | LeCun Y, Bengio Y, Hinton G, et al. Deep learning. Nature, 2015, 521: 436-444. |
15 | Rumelhart D, Hinton G E, Williams R J, et al. Learning representations by back-propagating errors. Nature, 1986, 323: 533-536. |
16 | Hinton G E, Osindero S, The Y W, et al. A fast learning algorithm for deep belief nets. Neural Computation, 2006, 18(7): 1527-1554. |
17 | Hinton G E, Salakhutdinov R R, Hinton G E, et al. Reducing the dimensionality of data with neural networks. Science, 2006, 313: 504-507. |
18 | Krizhevsky A, Sutskever I, Hinton G E.Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105. |
19 | Schroff F, Kalenichenko D, Philbin J, et al. Facenet: A unified embedding for face recognition and clustering//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 815-823. |
20 | Fawaz H I, Forestier G, Weber J, et al. Deep learning for time series classification: A review. Data Mining and Knowledge Discovery, 2019, 33(4): 917-963. |
21 | Qiang M J. Research of deep learning in crop image recognition. Journal of Fujian Computer, 2021, 37(2): 1-5. |
强敏杰. 深度学习在农作物图像识别中的应用研究. 福建电脑, 2021, 37(2): 1-5. | |
22 | Liu W X, Kuai N Y, Han S, et al. The intelligent identification system of alien invasive plants based on Android and deep learning. Plant Protection, 2021, 47(4): 174-179, 233. |
刘万学, 蒯乃阳, 韩爽, 等. 基于Android和深度学习的外来入侵植物智能识别系统. 植物保护, 2021, 47(4): 174-179, 233. | |
23 | Yang W Q, Liu T X, Tang X P, et al. Research progress on plant phenomics in the context of smart agriculture. Journal of Henan Agricultural Sciences, 2022, 51(7): 1-12. |
杨文庆, 刘天霞, 唐兴萍, 等. 智慧农业背景下的植物表型组学研究进展. 河南农业科学, 2022, 51(7): 1-12. | |
24 | Gao H Y, Gao X H, Feng Q S, et al. Approach to plant species identification in natural grasslands based on deep learning. Pratacultural Science, 2020, 37(9): 1931-1939. |
高宏元, 高新华, 冯琦胜, 等. 基于深度学习的天然草地植物物种识别方法. 草业科学, 2020, 37(9): 1931-1939. | |
25 | Li M, Wang J X, Li H L, et al. Method for identifying crop disease based on CNN and transfer learning. Smart Agriculture, 2019, 1(3): 46-55. |
李淼, 王敬贤, 李华龙, 等. 基于CNN和迁移学习的农作物病害识别方法研究. 智慧农业, 2019, 1(3): 46-55. | |
26 | Xu J H, Shao M Y, Wang Y C, et al. Recognition of corn leaf spot and rust based on transfer learning with convolutional neural network. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 230-236, 253. |
许景辉, 邵明烨, 王一琛, 等. 基于迁移学习的卷积神经网络玉米病害图像识别. 农业机械学报, 2020, 51(2): 230-236, 253. | |
27 | Qin F, Ruan L, Ma Z H, et al. Image recognition of alfalfa brown spot and rust based on Logistic regression model//Green prevention and control of pests and diseases and the quality and safety of agricultural products-Proceedings of the 2015 Academic Annual Conference of the Chinese Society for Plant Protection. Beijing: China Agricultural Science and Technology Press, 2015: 465. |
秦丰, 阮柳, 马占鸿, 等. 基于Logistic回归模型的苜蓿褐斑病和锈病的图像识别//病虫害绿色防控与农产品质量安全-中国植物保护学会2015年学术年会论文集. 北京: 中国农业科学技术出版社, 2015: 465. | |
28 | Li Y Z, Yu B H, Xu L B. Alfalfa disease atlas. Beijing: China Agricultural Science and Technology Press, 2016: 10. |
李彦忠, 俞斌华, 徐林波. 紫花苜蓿病害图谱. 北京: 中国农业科学技术出版社, 2016: 10. | |
29 | Xiao W, Feng Q, Zhang J H, et al. Research on plant disease identification based on few-shot learning. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 138-143. |
肖伟, 冯全, 张建华, 等. 基于小样本学习的植物病害识别研究. 中国农机化学报, 2021, 42(11): 138-143. | |
30 | Ren S N, Sun Y, Zhang H Y, et al. Plant disease identification for small sample based on one-shot learning. Jiangsu Journal of Agricultural Sciences, 2019, 35(5): 1061-1067. |
任胜男, 孙钰, 张海燕, 等. 基于one-shot学习的小样本植物病害识别. 江苏农业学报, 2019, 35(5): 1061-1067. | |
31 | Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection// IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA, 2016: 779-788. |
32 | Girshick R. Fast r-cnn// Computer Vision and Pattern Recognition (cs.CV). Boston, MA, USA, 2015: 1440-1448. |
[1] | WANG Xiao-yu, DING Ting-ting, LI Yan-zhong, DUAN Ting-yu. Effects of an arbuscular mycorrhizal fungus and a rhizobium species on Medicago sativa wilt and Fusarium oxysporum root rot [J]. Acta Prataculturae Sinica, 2019, 28(8): 139-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||