Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (7): 25-40.DOI: 10.11686/cyxb2023310
Previous Articles Next Articles
Si-yuan LI1(), Zong-jiu SUN1,2,3(), Bing-jie YU1, Chen-ye ZHOU1, Lei ZHOU1, Li ZHENG1, Hui-xia LIU1, Hua-wei YE1
Received:
2023-08-31
Revised:
2023-11-09
Online:
2024-07-20
Published:
2024-04-08
Contact:
Zong-jiu SUN
Si-yuan LI, Zong-jiu SUN, Bing-jie YU, Chen-ye ZHOU, Lei ZHOU, Li ZHENG, Hui-xia LIU, Hua-wei YE. Effect of grazing exclusion on soil carbon, nitrogen, and phosphorus contents and enzyme activity and stoichiometry in Seriphidium transiliense desertgrasslands[J]. Acta Prataculturae Sinica, 2024, 33(7): 25-40.
项目Items | C | N | P | C/N | C/P | N/P | βG | NAG | LAP | ALP | 酶C/N | 酶C/P | 酶N/P | VL | VA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 1.000 | 0.024 | 0.102 | 0.662* | 0.844** | 0.000 | -0.092 | -0.202 | -0.506 | 0.248 | 0.022 | -0.237 | -0.337 | -0.281 | 0.340 |
N | -0.284 | 1.000 | 0.074 | -0.722** | -0.023 | 0.877** | 0.238 | -0.227 | -0.198 | 0.292 | 0.293 | 0.074 | -0.363 | -0.017 | 0.291 |
P | 0.280 | -0.675* | 1.000 | -0.071 | -0.447 | -0.413 | 0.157 | -0.095 | -0.326 | 0.192 | 0.191 | -0.003 | -0.265 | -0.077 | 0.163 |
C/N | 0.723** | -0.852** | 0.694* | 1.000 | 0.637* | -0.608* | -0.272 | 0.074 | -0.171 | -0.075 | -0.244 | -0.228 | 0.081 | -0.181 | -0.022 |
C/P | 0.940** | -0.064 | -0.062 | 0.513 | 1.000 | 0.219 | -0.156 | -0.132 | -0.270 | 0.118 | -0.074 | -0.200 | -0.158 | -0.201 | 0.216 |
N/P | -0.301 | 0.988** | -0.777** | -0.862** | -0.044 | 1.000 | 0.153 | -0.181 | -0.028 | 0.179 | 0.191 | 0.078 | -0.214 | 0.028 | 0.200 |
βG | 0.146 | 0.235 | -0.329 | -0.160 | 0.249 | 0.242 | 1.000 | -0.279 | -0.032 | 0.327 | 0.977** | 0.792** | -0.354 | 0.600* | 0.359 |
NAG | -0.309 | -0.187 | 0.532 | -0.021 | -0.523 | -0.280 | -0.265 | 1.000 | -0.252 | -0.314 | -0.453 | -0.073 | 0.537 | -0.016 | -0.593* |
LAP | -0.275 | -0.205 | 0.150 | -0.010 | -0.347 | -0.212 | -0.215 | 0.419 | 1.000 | -0.320 | -0.073 | 0.179 | 0.340 | 0.251 | -0.307 |
ALP | -0.084 | -0.048 | 0.086 | 0.079 | -0.102 | -0.033 | -0.109 | -0.450 | -0.516 | 1.000 | 0.407 | -0.313 | -0.956** | -0.556 | 0.925** |
酶C/N | 0.333 | 0.217 | -0.446 | -0.042 | 0.498 | 0.261 | 0.879** | -0.630* | -0.526 | 0.134 | 1.000 | 0.718** | -0.482 | 0.520 | 0.498 |
酶C/P | 0.225 | 0.121 | -0.273 | -0.080 | 0.311 | 0.126 | 0.744** | 0.066 | 0.173 | -0.725** | 0.542 | 1.000 | 0.262 | 0.961** | -0.232 |
酶N/P | -0.100 | -0.065 | 0.140 | -0.067 | -0.169 | -0.107 | -0.037 | 0.694* | 0.708** | -0.927** | -0.385 | 0.565 | 1.000 | 0.487 | -0.979** |
VL | 0.132 | 0.150 | -0.227 | -0.144 | 0.196 | 0.140 | 0.602* | 0.232 | 0.330 | -0.857** | 0.336 | 0.966** | 0.735** | 1.000 | -0.446 |
VA | 0.178 | 0.126 | -0.226 | 0.049 | 0.282 | 0.174 | 0.140 | -0.781** | -0.746** | 0.854** | 0.510 | -0.432 | -0.977** | -0.621* | 1.000 |
Table 1 Correlation coefficient of soil carbon, nitrogen and phosphorus with enzyme activities and their stoichiometry
项目Items | C | N | P | C/N | C/P | N/P | βG | NAG | LAP | ALP | 酶C/N | 酶C/P | 酶N/P | VL | VA |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | 1.000 | 0.024 | 0.102 | 0.662* | 0.844** | 0.000 | -0.092 | -0.202 | -0.506 | 0.248 | 0.022 | -0.237 | -0.337 | -0.281 | 0.340 |
N | -0.284 | 1.000 | 0.074 | -0.722** | -0.023 | 0.877** | 0.238 | -0.227 | -0.198 | 0.292 | 0.293 | 0.074 | -0.363 | -0.017 | 0.291 |
P | 0.280 | -0.675* | 1.000 | -0.071 | -0.447 | -0.413 | 0.157 | -0.095 | -0.326 | 0.192 | 0.191 | -0.003 | -0.265 | -0.077 | 0.163 |
C/N | 0.723** | -0.852** | 0.694* | 1.000 | 0.637* | -0.608* | -0.272 | 0.074 | -0.171 | -0.075 | -0.244 | -0.228 | 0.081 | -0.181 | -0.022 |
C/P | 0.940** | -0.064 | -0.062 | 0.513 | 1.000 | 0.219 | -0.156 | -0.132 | -0.270 | 0.118 | -0.074 | -0.200 | -0.158 | -0.201 | 0.216 |
N/P | -0.301 | 0.988** | -0.777** | -0.862** | -0.044 | 1.000 | 0.153 | -0.181 | -0.028 | 0.179 | 0.191 | 0.078 | -0.214 | 0.028 | 0.200 |
βG | 0.146 | 0.235 | -0.329 | -0.160 | 0.249 | 0.242 | 1.000 | -0.279 | -0.032 | 0.327 | 0.977** | 0.792** | -0.354 | 0.600* | 0.359 |
NAG | -0.309 | -0.187 | 0.532 | -0.021 | -0.523 | -0.280 | -0.265 | 1.000 | -0.252 | -0.314 | -0.453 | -0.073 | 0.537 | -0.016 | -0.593* |
LAP | -0.275 | -0.205 | 0.150 | -0.010 | -0.347 | -0.212 | -0.215 | 0.419 | 1.000 | -0.320 | -0.073 | 0.179 | 0.340 | 0.251 | -0.307 |
ALP | -0.084 | -0.048 | 0.086 | 0.079 | -0.102 | -0.033 | -0.109 | -0.450 | -0.516 | 1.000 | 0.407 | -0.313 | -0.956** | -0.556 | 0.925** |
酶C/N | 0.333 | 0.217 | -0.446 | -0.042 | 0.498 | 0.261 | 0.879** | -0.630* | -0.526 | 0.134 | 1.000 | 0.718** | -0.482 | 0.520 | 0.498 |
酶C/P | 0.225 | 0.121 | -0.273 | -0.080 | 0.311 | 0.126 | 0.744** | 0.066 | 0.173 | -0.725** | 0.542 | 1.000 | 0.262 | 0.961** | -0.232 |
酶N/P | -0.100 | -0.065 | 0.140 | -0.067 | -0.169 | -0.107 | -0.037 | 0.694* | 0.708** | -0.927** | -0.385 | 0.565 | 1.000 | 0.487 | -0.979** |
VL | 0.132 | 0.150 | -0.227 | -0.144 | 0.196 | 0.140 | 0.602* | 0.232 | 0.330 | -0.857** | 0.336 | 0.966** | 0.735** | 1.000 | -0.446 |
VA | 0.178 | 0.126 | -0.226 | 0.049 | 0.282 | 0.174 | 0.140 | -0.781** | -0.746** | 0.854** | 0.510 | -0.432 | -0.977** | -0.621* | 1.000 |
Fig.12 SEM fitted to connections among soil carbon, nitrogen, phosphorus, enzyme activities and their stoichiometry feature fitting in sagebrush desert grassland
1 | Liu S J, Xia X, Chen G M, et al. Study progress on functions and affecting factors of soil enzymes. Chinese Agricultural Science Bulletin, 2011, 27(21): 1-7. |
刘善江, 夏雪, 陈桂梅, 等. 土壤酶的研究进展. 中国农学通报, 2011, 27(21): 1-7. | |
2 | Nannipieri P, Trasar-Cepeda C, Dick R P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biology and Fertility of Soils, 2018, 54(1): 11-19. |
3 | Peng X, Wang W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of northern China. Soil Biology and Biochemistry, 2016, 98: 74-84. |
4 | Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315. |
5 | Zhang X X, Yang L M, Chen Z, et al. Patterns of ecoenzymatic stoichiometry on types of forest soils form different parent materials in subtropical areas. Acta Ecologica Sinica, 2018, 38(16): 5828-5836. |
张星星, 杨柳明, 陈忠, 等. 中亚热带不同母质和森林类型土壤生态酶化学计量特征. 生态学报, 2018, 38(16): 5828-5836. | |
6 | Lu Y M, Xu E L, Wu D M, et al. Effects of double addition or removal of litter on soil hydrolases activities and their stoichiometry in Castanopsis carlesii forest. Journal of Soil and Water Conservation, 2021, 35(4): 313-320. |
陆宇明, 许恩兰, 吴东梅, 等. 凋落物双倍添加和移除对米槠林土壤水解酶活性及其化学计量比的影响. 水土保持学报, 2021, 35(4): 313-320. | |
7 | Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 2008, 11(11): 1252-1264. |
8 | Moorhead D L, Sinsabaugh R L, Hill B H, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology and Biochemistry, 2016, 93: 1-7. |
9 | Moorhead D L, Rinkes Z L, Sinsabaugh R L, et al. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: Informing enzyme-based decomposition models. Frontiers in Microbiology, 2013, 4: 223. |
10 | Zhu J Z, Jin G L, Sun Z J, et al. Study on degraded ecosystem of desert grassland in Seriphidium transiliense. Beijing: China Agriculture Press, 2013. |
朱进忠, 靳瑰丽, 孙宗玖, 等. 伊犁绢蒿荒漠草地退化生态系统研究. 北京: 中国农业出版社, 2013. | |
11 | Dong Y Q, An S Z, Sun Z J, et al. Effects of grazing exclusion times on soil organic carbon storage and microbial biomass carbon and nitrogen in degraded Seriphidium transiliense desert. Xinjiang Agricultural Sciences, 2017, 54(5): 961-968. |
董乙强, 安沙舟, 孙宗玖, 等. 禁牧年限对退化伊犁绢蒿荒漠土壤有机碳库和微生物碳, 氮的影响. 新疆农业科学, 2017, 54(5): 961-968. | |
12 | Chen T T, Sun S H, Wang Z L, et al. Progress on the influence of grazing exclusion on vegetation community characteristics. Agricultural Technology Service, 2020, 37(9): 42-43. |
陈亭亭, 孙士浩, 王正莉, 等. 围栏封育对植被群落特征影响的研究进展. 农技服务, 2020, 37(9): 42-43. | |
13 | Qin L P, Bai W L, Zheng T J. Research progress on the effect of fencing on grassland soil nutrient improvement. China Cattle Science, 2020, 46(6): 20-23. |
秦丽萍, 白文丽, 郑廷杰. 围栏封育对草地土壤养分改良效果的研究进展. 中国牛业科学, 2020, 46(6): 20-23. | |
14 | Wang G Q, Du G M, Nie Y Y, et al. Progress on the influence of grazing exclusion on community characteristics in China. Heilongjiang Animal Science and Veterinary Medicine, 2017, 13(7): 75-77. |
王国庆, 杜广明, 聂莹莹, 等. 我国围栏封育对群落特征影响的研究进展. 黑龙江畜牧兽医, 2017, 13(7): 75-77. | |
15 | Li J B, Cao Q X, Tursunay R, et al. Effects of enclosure on soil physical and chemical quality and enzymatic activity in grassland of Yili valley in spring-autumn. Chinese Journal of Grassland, 2014, 36(1): 84-89. |
李军保, 曹庆喜, 吐尔逊娜依·热依木江, 等. 围封对伊犁河谷春秋草场土壤理化性质及酶活性的影响. 中国草地学报, 2014, 36(1): 84-89. | |
16 | Hewins D B, Fatemi F, Adams B, et al. Grazing, regional climate and soil biophysical impacts on microbial enzyme activity in grassland soil of western Canada. Pedobiologia, 2015, 58(5/6): 201-209. |
17 | Li G Q, Zhao P P, Shao W S, et al. Studies on the soil physical and chemical properties and enzyme activities of two fenced plant communities in desert steppe grassland. Acta Prataculturae Sinica, 2019, 28(7): 49-59. |
李国旗, 赵盼盼, 邵文山, 等. 围封条件下荒漠草原两种植物群落土壤理化性状与酶活性的研究. 草业学报, 2019, 28(7): 49-59. | |
18 | Zhu X P, Jia H T, Jiang P A, et al. Effects of fencing enclosure on soil enzyme activities of three kinds in pasture of middle Tianshan Mountain. Journal of Xinjiang Agricultural University, 2012, 35(5): 409-413. |
朱新萍, 贾宏涛, 蒋平安, 等. 封育对中天山三种类型草地土壤酶活性的影响. 新疆农业大学学报, 2012, 35(5): 409-413. | |
19 | Bao S D. Soil and agricultural chemistry analysis (Third Edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第三版). 北京: 中国农业出版社, 2000. | |
20 | Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biology and Biochemistry, 2001, 33(12/13): 1633-1640. |
21 | Sinsabaugh R L, Hill B H, Follstad S J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 2009, 462(7274): 795-798. |
22 | Mi Q, Wang Y, Qin X J, et al. Response of soil enzyme stoichiometry to different enclosure durations in alpine meadow, Tibetan Plateau. Acta Agrestia Sinica, 2021, 29(1): 33-41. |
米琦, 王毅, 秦小静, 等. 青藏高原高寒草甸不同围栏年限土壤酶化学计量特征. 草地学报, 2021, 29(1): 33-41. | |
23 | Si G C, Yuan Y L, Wang J, et al. Effects of fencing on microbial communities and soil enzyme activities in Damxung alpine grassland. Pratacultural Science, 2015, 32(1): 1-10. |
斯贵才, 袁艳丽, 王建, 等. 围封对当雄县高寒草原土壤微生物和酶活性的影响. 草业科学, 2015, 32(1): 1-10. | |
24 | Feng D F, Bao W K. Shrub encroachment alters topsoil C∶N∶P stoichiometric ratios in a high-altitude forest cutover. Iforest-Biogeosciences and Forestry, 2018, 11(5): 594-599. |
25 | Wang M, Gong Y, Lafleur P, et al. Patterns and drivers of carbon, nitrogen and phosphorus stoichiometry in southern China’s grasslands. Science of the Total Environment, 2021, 785: 147201. |
26 | Asitaiken J L H T, Dong Y Q, Li J, et al. Effects of grazing exclusion on nutrition and stoichiometry characteristics of Artemisia desert vegetation and soil. Journal of Arid Land Resources and Environment, 2021, 35(11): 157-164. |
阿斯太肯·居力海提, 董乙强, 李靖, 等. 禁牧对不同气候区蒿类荒漠植被和土壤养分及化学计量特征的影响. 干旱区资源与环境, 2021, 35(11): 157-164. | |
27 | Nie T T, Dong Y Q, Yang H L, et al. Effects of enclosure on plant and soil stoichiometric characteristics in an Artemisia desert. Journal of Agricultural Science and Technology, 2023, 25(3): 178-187. |
聂婷婷, 董乙强, 杨合龙, 等. 围栏封育对蒿类荒漠植物-土壤碳氮磷化学计量特征的影响. 中国农业科技导报, 2023, 25(3): 178-187. | |
28 | Reeder J, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002, 116(3): 457-463. |
29 | Sun J, Gao P, Li C, et al. Ecological stoichiometry characteristics of the leaf-litter-soil continuum of Quercus acutissima Carr. and Pinus densiflora Sieb. in Northern China. Environmental Earth Sciences, 2019, 78: 1-13. |
30 | Cleveland C C, Liptzin D. C∶N∶P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 2007, 85: 235-252. |
31 | Zeng Q, Liu Y, Fang Y, et al. Impact of vegetation restoration on plants and soil C∶N∶P stoichiometry on the Yunwu Mountain Reserve of China. Ecological Engineering, 2017, 109(PartA): 92-100. |
32 | Fan Y M, Wu H Q, Jin G L, et al. Effects of enclosure on stoichiometric characteristics of C, N, P in desert grassland ecosystem. Chinese Journal of Grassland, 2018, 40(3): 76-81. |
范燕敏, 武红旗, 靳瑰丽, 等. 封育对荒漠草地生态系统C、N、P化学计量特征的影响. 中国草地学报, 2018, 40(3): 76-81. | |
33 | Burns R G, Dick R P. Enzymes in the environment: Activity, ecology, and applications. Boca Raton: CRC Press, 2002. |
34 | Kaiser C, Koranda M, Kitzler B, et al. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytologist, 2010, 187(3): 843-858. |
35 | Boerner R E J, Brinkman J A, Smith A. Seasonal variations in enzyme activity and organic carbon in soil of a burned and unburned hardwood forest. Soil Biology and Biochemistry, 2005, 37(8): 1419-1426. |
36 | Li Y N, Li S Y, Sun Y, et al. Responses of soil enzyme activities and stoichiometry characteristics of desert steep to different stocking rates. Acta Agrestia Sinica, 2022, 30(8): 2019-2026. |
李雅男, 李邵宇, 孙宇, 等. 荒漠草原土壤酶活性及化学计量特征对不同载畜率的响应. 草地学报, 2022, 30(8): 2019-2026. | |
37 | Weintraub M N, Scott-Denton L E, Schmidt S K, et al. The effects of tree rhizodeposition on soil exoenzyme activity, dissolved organic carbon, and nutrient availability in a subalpine forest ecosystem. Oecologia, 2007, 154(2): 327-338. |
38 | Cui Y, Bing H, Fang L, et al. Extracellular enzyme stoichiometry reveals the carbon and phosphorus limitations of microbial metabolisms in the rhizosphere and bulk soils in alpine ecosystems. Plant and Soil, 2021, 458(1/2): 7-20. |
39 | Cui Y X, Fang L C, Deng L, et al. Patterns of soil microbial nutrient limitations and their roles in the variation of soil organic carbon across a precipitation gradient in an arid and semi-arid region. Science of the Total Environment, 2019, 658: 1440-1451. |
40 | Xu M P, Ren C J, Zhang W, et al. Responses mechanism of C∶N∶P stoichiometry of soil microbial biomass and soil enzymes to climate change. Chinese Journal of Applied Ecology, 2018, 29(7): 2445-2454. |
许淼平, 任成杰, 张伟, 等. 土壤微生物生物量碳氮磷与土壤酶化学计量对气候变化的响应机制. 应用生态学报, 2018, 29(7): 2445-2454. | |
41 | Xie M Y, Feng X X, Ma H F, et al. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains. Chinese Journal of Plant Ecology, 2020, 44(8): 885-894. |
解梦怡, 冯秀秀, 马寰菲, 等. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素. 植物生态学报, 2020, 44(8): 885-894. | |
42 | Liu Y, Liu J C, Song Y L, et al. Effects of seasonal changes on soil enzyme activities and their stoichiometric characteristics of subalpine forests in western Sichuan. Journal of Sichuan Agricultural University, 2023, 41(3): 456-463. |
刘谣, 刘金超, 宋钰珑, 等. 季节变化对川西亚高山森林土壤酶活性及化学计量特征的影响. 四川农业大学学报, 2023, 41(3): 456-463. | |
43 | Gu X N, He H S, Tao Y, et al. Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain. Acta Ecologica Sinica, 2017, 37(24): 8374-8384. |
谷晓楠, 贺红士, 陶岩, 等. 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子. 生态学报, 2017, 37(24): 8374-8384. |
[1] | Rui-min QIN, Si-jia CHENG, Li MA, Zhong-hua ZHANG, Jing-jing WEI, Hong-ye SU, Zheng-chen SHI, Tao CHANG, Xue HU, De-ha-ze A, Fang YUAN, Shan LI, Hua-kun ZHOU. Effects of grazing exclusion and fertilization on alpine meadow community characteristics and vegetation carbon and nitrogen pools [J]. Acta Prataculturae Sinica, 2024, 33(4): 1-11. |
[2] | Si-yuan LI, Yu-xuan CUI, Zong-jiu SUN, Hui-xia LIU, Hua-wei YE. Effect of grazing exclusion on soil organic carbon and stoichiometry characteristics of soil microbial biomass in sagebrush desert [J]. Acta Prataculturae Sinica, 2023, 32(6): 58-70. |
[3] | Shuai-nan LIU, Guang LI, Jiang-qi WU, Wei-wei MA, Chuan-jie YANG, Shi-kang ZHANG, Yao YAO, Yan-hua LU, Xing-xing WEI, Juan ZHANG. Characteristics of soil nutrients under different land types in the loess hill region based on ecological chemometrics [J]. Acta Prataculturae Sinica, 2021, 30(3): 200-207. |
[4] | Yu-xuan CUI, Zong-jiu SUN, Hui-xia LIU, Yi-qiang DONG. Effects of short-term grazing exclusion on standing biomass and plant community diversity in sagebrush desert [J]. Acta Prataculturae Sinica, 2020, 29(12): 17-26. |
[5] | LI Zheng-yan, XU Zhi-ming, SHI Shang-li, HE Chun-gui. Effects of different crop rotations on alfalfa yield and soil quality in the Jiang-huai area [J]. Acta Prataculturae Sinica, 2019, 28(8): 28-39. |
[6] | LI Ming, QIN Jie, HONG Yu, YANG Dian-lin, ZHOU Guang-fan, WANG Yu, WANG Li-juan. Effects of nitrogen addition on ecological stoichiometric characteristics of carbon, nitrogen and phosphorus in Stipa baicalensis grassland soil aggregates [J]. Acta Prataculturae Sinica, 2019, 28(12): 29-40. |
[7] | DONG Xue, HAO Yu-guang, XIN Zhi-ming, LI Xin-le, DUAN Rui-bing, LIU Fang, ZHAO Ying-ming, HUANG Ya-ru. Effects of time after rejuvenation pruning and stand age on leaf functional traits of Ammopiptanthus mongolicus and stoichiometric characteristics of rhizosphere soil [J]. Acta Prataculturae Sinica, 2019, 28(10): 122-133. |
[8] | LIU Ming, CHEN Yuan-xue, CHEN Qiang, PENG Dan, YU Xiao, YANG Jun-wei, XU Kai-wei. Effects of a Vicia villosa green-manure crop inoculated rhizobium during winter fallow, on soil fertility factors and fertilizer needs of a summer tobacco crop [J]. Acta Prataculturae Sinica, 2019, 28(1): 162-169. |
[9] | LI Xiao-ting, ZHAO Xiao, WANG Deng-ke, HUANG Lei, YAO Lu-hua, WANG Dang-jun, HE Yu-ji, GUO Yan-jun. Chemical profiles of cuticular waxes in arid steppe plant species and their response to continuous grazing [J]. Acta Prataculturae Sinica, 2018, 27(6): 137-147. |
[10] | Saiyaremu·Halifu, Aikebaier·Yilahong, SONG Rui-qing, Abudousaimaiti·Naihemaiti, Mirenisha·Maimaitiming, Diliduer·Aili. Correlation between soil enzyme activities and soil physical chemical properties in Chabuchar Grassland [J]. Acta Prataculturae Sinica, 2018, 27(3): 116-125. |
[11] | WANG Peng-Fei, JIA Lu-Ting, DU Jun-Jie, ZHANG Jian-Cheng, MU Xiao-Peng, DING Wei. Improvement of soil quality by Chinese dwarf cherry cultivation in the Loess Plateau steep hill region [J]. Acta Prataculturae Sinica, 2017, 26(3): 65-74. |
[12] | SUN Ya-Nan, LI Qian, LI Yi-Kang, LIN Li, DU Yan-Gong, CAO Guang-Min. The effect of nitrogen and phosphorus applications on soil enzyme activities in Qinghai-Tibetan alpine meadows [J]. Acta Prataculturae Sinica, 2016, 25(2): 18-26. |
[13] | HU Lei,WANG Chang-ting,WANG Gen-xu,MA Li,LIU Wei,XIANG Ze-yu. Changes in the activities of soil enzymes and microbial community structure at different degradation successional stages of alpine meadows in the headwater region of Three Rivers, China [J]. Acta Prataculturae Sinica, 2014, 23(3): 8-12. |
[14] |
ZHAO Ling-ping, CHENG Ji-min, SU Ji-shuai.
The role of soil seed bank in vegetation succession under grazing exclusion in Stipa bungeana grasslands on the Loess Plateau [J]. Acta Prataculturae Sinica, 2012, 21(3): 38-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||