Acta Prataculturae Sinica ›› 2024, Vol. 33 ›› Issue (10): 147-158.DOI: 10.11686/cyxb2023431
Wen-jun ZHAO1,2(), Rui LIU3(), Zheng-xu WANG1, Yu FENG4, Kai-zheng XUE1, Kui LIU1, Zi-he XU1, Wei-dong CAO5, Li-bo FU6, Mei YIN6, Hua CHEN6()
Received:
2023-11-15
Revised:
2023-12-22
Online:
2024-10-20
Published:
2024-07-15
Contact:
Hua CHEN
Wen-jun ZHAO, Rui LIU, Zheng-xu WANG, Yu FENG, Kai-zheng XUE, Kui LIU, Zi-he XU, Wei-dong CAO, Li-bo FU, Mei YIN, Hua CHEN. Effects of rotation with a green manure crop on soil quality and microbial nutrient limitation in a tobacco field in Yunnan[J]. Acta Prataculturae Sinica, 2024, 33(10): 147-158.
项目 Item | 处理 Treatment | pH 值 pH value | 有机质 Organic matter (SOM, g·kg-1) | 全氮 Total nitrogen (TN, g·kg-1) | 全磷 Total phosphorus (TP, g·kg-1) | 全钾 Total potassium (TK, g·kg-1) | 有效磷 Available phosphorus (AP, mg·kg-1) | 速效钾 Available potassium (AK, mg·kg-1) |
---|---|---|---|---|---|---|---|---|
2019 | WF | 6.79±0.06a | 17.61±1.61a | 1.27±0.16a | 1.64±0.19a | 9.64±0.35a | 32.84±2.12a | 144.5±13.7a |
RD | 6.79±0.14a | 17.03±0.46a | 1.25±0.05a | 1.59±0.06a | 9.52±0.31a | 36.16±2.43a | 128.2±8.8a | |
SV | 6.94±0.10a | 17.32±2.36a | 1.26±0.14a | 1.56±0.06a | 9.01±0.64a | 32.56±2.76a | 152.2±12.8a | |
RG | 6.93±0.07a | 18.20±3.26a | 1.15±0.13a | 1.54±0.04a | 9.51±0.62a | 33.42±3.03a | 144.0±9.2a | |
2022 | WF | 6.06±0.05a | 20.21±0.11b | 1.43±0.01a | 1.66±0.03a | 9.83±0.37a | 42.79±5.56ab | 265.0±33.4b |
RD | 6.26±0.08a | 20.66±0.40b | 1.47±0.05a | 1.57±0.05a | 9.95±1.51a | 43.08±2.30ab | 320.0±40.8b | |
SV | 6.29±0.24a | 21.52±0.26ab | 1.47±0.01a | 1.28±0.01b | 10.07±2.08a | 39.79±2.39b | 326.7±73.6b | |
RG | 6.17±0.04a | 22.17±0.91a | 1.41±0.01a | 1.44±0.05a | 8.47±0.15a | 52.98±8.26a | 460.0±46.4a | |
增幅 Increase (%) | WF | -10.7±0.8a | 14.8±0.6b | 12.6±0.5b | 1.3±1.9a | 1.9±3.8a | 30.3±16.9b | 83.4±23.1b |
RD | -7.9±1.2a | 21.3±2.4a | 17.6±3.6b | -1.2±3.0a | 4.4±15.9a | 19.1±6.4b | 149.6±31.9ab | |
SV | -9.5±3.5a | 24.2±1.5a | 16.7±1.1b | -17.7±0.8c | 11.7±23.1a | 22.2±7.3b | 114.6±48.4b | |
RG | -11.0±0.6a | 21.8±5.0ab | 22.6±1.3a | -6.6±3.3b | -11.0±1.5b | 58.5±24.7a | 219.5±32.2a |
Table 1 Soil chemical properties in different treatments
项目 Item | 处理 Treatment | pH 值 pH value | 有机质 Organic matter (SOM, g·kg-1) | 全氮 Total nitrogen (TN, g·kg-1) | 全磷 Total phosphorus (TP, g·kg-1) | 全钾 Total potassium (TK, g·kg-1) | 有效磷 Available phosphorus (AP, mg·kg-1) | 速效钾 Available potassium (AK, mg·kg-1) |
---|---|---|---|---|---|---|---|---|
2019 | WF | 6.79±0.06a | 17.61±1.61a | 1.27±0.16a | 1.64±0.19a | 9.64±0.35a | 32.84±2.12a | 144.5±13.7a |
RD | 6.79±0.14a | 17.03±0.46a | 1.25±0.05a | 1.59±0.06a | 9.52±0.31a | 36.16±2.43a | 128.2±8.8a | |
SV | 6.94±0.10a | 17.32±2.36a | 1.26±0.14a | 1.56±0.06a | 9.01±0.64a | 32.56±2.76a | 152.2±12.8a | |
RG | 6.93±0.07a | 18.20±3.26a | 1.15±0.13a | 1.54±0.04a | 9.51±0.62a | 33.42±3.03a | 144.0±9.2a | |
2022 | WF | 6.06±0.05a | 20.21±0.11b | 1.43±0.01a | 1.66±0.03a | 9.83±0.37a | 42.79±5.56ab | 265.0±33.4b |
RD | 6.26±0.08a | 20.66±0.40b | 1.47±0.05a | 1.57±0.05a | 9.95±1.51a | 43.08±2.30ab | 320.0±40.8b | |
SV | 6.29±0.24a | 21.52±0.26ab | 1.47±0.01a | 1.28±0.01b | 10.07±2.08a | 39.79±2.39b | 326.7±73.6b | |
RG | 6.17±0.04a | 22.17±0.91a | 1.41±0.01a | 1.44±0.05a | 8.47±0.15a | 52.98±8.26a | 460.0±46.4a | |
增幅 Increase (%) | WF | -10.7±0.8a | 14.8±0.6b | 12.6±0.5b | 1.3±1.9a | 1.9±3.8a | 30.3±16.9b | 83.4±23.1b |
RD | -7.9±1.2a | 21.3±2.4a | 17.6±3.6b | -1.2±3.0a | 4.4±15.9a | 19.1±6.4b | 149.6±31.9ab | |
SV | -9.5±3.5a | 24.2±1.5a | 16.7±1.1b | -17.7±0.8c | 11.7±23.1a | 22.2±7.3b | 114.6±48.4b | |
RG | -11.0±0.6a | 21.8±5.0ab | 22.6±1.3a | -6.6±3.3b | -11.0±1.5b | 58.5±24.7a | 219.5±32.2a |
处理 Treat-ment | 碳相关酶活性 C-related enzyme activities | 氮相关酶活性 N-related enzyme activities | 磷相关酶活性P-related enzyme activities | ||||
---|---|---|---|---|---|---|---|
β-葡萄糖苷酶 β-glucosidase (BG) | β-纤维二糖苷酶 β-cellobiosidase (CB) | β-木糖苷酶 β-xylosidase (XYL) | α-葡萄糖苷酶 α-glucosidase (AG) | 乙酰氨基葡萄糖苷酶 N-acetylglucosaminidase (NAG) | 亮氨酸氨基肽酶 L-leucine-7-amido-4-methyl coumarin (LAP) | 碱性磷酸酶 Alkaline phosphatase (AKP) | |
WF | 25.95±1.39b | 4.37±1.30a | 11.80±2.46c | 1.23±0.15c | 14.58±1.73a | 10.30±1.44c | 40.19±5.74c |
RD | 47.78±7.15a | 3.71±0.62a | 14.22±0.83bc | 1.47±0.16c | 16.15±0.35a | 16.41±1.82b | 165.60±5.06b |
SV | 44.90±2.01a | 4.33±1.62a | 28.62±0.62a | 2.89±0.64b | 13.92±2.61a | 23.18±0.37a | 189.40±26.61ab |
RG | 43.24±7.37a | 4.37±0.62a | 17.57±2.10b | 4.45±0.53a | 12.83±2.24a | 20.17±0.48ab | 215.39±36.32a |
Table 2 Hydrolase enzyme activities in soils under different treatments (nmol·h-1·g-1)
处理 Treat-ment | 碳相关酶活性 C-related enzyme activities | 氮相关酶活性 N-related enzyme activities | 磷相关酶活性P-related enzyme activities | ||||
---|---|---|---|---|---|---|---|
β-葡萄糖苷酶 β-glucosidase (BG) | β-纤维二糖苷酶 β-cellobiosidase (CB) | β-木糖苷酶 β-xylosidase (XYL) | α-葡萄糖苷酶 α-glucosidase (AG) | 乙酰氨基葡萄糖苷酶 N-acetylglucosaminidase (NAG) | 亮氨酸氨基肽酶 L-leucine-7-amido-4-methyl coumarin (LAP) | 碱性磷酸酶 Alkaline phosphatase (AKP) | |
WF | 25.95±1.39b | 4.37±1.30a | 11.80±2.46c | 1.23±0.15c | 14.58±1.73a | 10.30±1.44c | 40.19±5.74c |
RD | 47.78±7.15a | 3.71±0.62a | 14.22±0.83bc | 1.47±0.16c | 16.15±0.35a | 16.41±1.82b | 165.60±5.06b |
SV | 44.90±2.01a | 4.33±1.62a | 28.62±0.62a | 2.89±0.64b | 13.92±2.61a | 23.18±0.37a | 189.40±26.61ab |
RG | 43.24±7.37a | 4.37±0.62a | 17.57±2.10b | 4.45±0.53a | 12.83±2.24a | 20.17±0.48ab | 215.39±36.32a |
1 | Deng X H, Huang J, Yang L L, et al. The synergistic effect of lime, green manure and bio-organic fertilizer on restoration of acid field and improvement of tobacco production efficiency. Journal of Plant Nutrition and Fertilizers, 2019, 25(9): 1577-1587. |
邓小华, 黄杰, 杨丽丽, 等. 石灰、绿肥和生物有机肥协同改良酸性土壤并提高烟草生产效益. 植物营养与肥料学报, 2019, 25(9): 1577-1587. | |
2 | Chavez M D, Berentsen P B M, Oude Lansink A G J M. Analyzing diversification possibilities on specialized tobacco farms in Argentina using a bio-economic farm model. Agricultural Systems, 2014, 128(3): 35-43. |
3 | Su Y, Zi H, Wei X, et al. Application of manure rather than plant-origin organic fertilizers alters the fungal community in continuous cropping tobacco soil. Frontiers in Microbiology, 2022, 13: 818956. |
4 | Li S J, Zhu Q F, Pei Z Y, et al. Reasons and countermeasures of tobacco successive cropping obstacle. Modern Agricultural Science and Technology, 2018(4): 54-56, 58. |
李世金, 朱启法, 裴洲洋, 等. 烟草种植连作障碍产生的原因及防治对策.现代农业科技, 2018(4): 54-56, 58. | |
5 | Wang Z, Zhang Y, Bo G, et al. Ralstonia solanacearum infection disturbed the microbiome structure throughout the whole tobacco crop niche as well as the nitrogen metabolism in soil. Frontiers in Bioengineering and Biotechnology, 2022, 10: 903555. |
6 | Zhang J G, Shen G M, Zhang J Q, et al. Advance in continuous cropping problems of tobacco. Chinese Tobacco Science, 2011, 32(3): 95-99. |
张继光, 申国明, 张久权, 等. 烟草连作障碍研究进展. 中国烟草科学, 2011, 32(3): 95-99. | |
7 | Cao W D, Bao X G, Xu C X, et al. Reviews and prospects on science and technology of green manure in China. Journal of Plant Nutrition and Fertilizers, 2017, 23(6): 1450-1461. |
曹卫东, 包兴国, 徐昌旭, 等. 中国绿肥科研60年回顾与未来展望. 植物营养与肥料学报, 2017, 23(6): 1450-1461. | |
8 | Gao S J, Zhou G P, Cao W D. Effects of milk vetch (Astragalus sinicus) as winter green manure on rice yield and rate of fertilizer application in rice paddies in south China. Journal of Plant Nutrition and Fertilizers, 2020, 26(12): 2115-2126. |
高嵩涓, 周国朋, 曹卫东. 南方稻田紫云英作冬绿肥的增产节肥效应与机制. 植物营养与肥料学报, 2020, 26(12): 2115-2126. | |
9 | Ning S Q, Jiang R, Li Z M, et al. Effects of three kinds of green manure on the yield and quality of flue-cured tobacco, soil nutrients and enzyme activities. Soil and Fertilizer Sciences in China, 2023: 1-10. (2023-8-29) [2024-3-27] https: //link.cnki.net/urlid/11.5498.S.20230828.1557.002. |
宁诗琪, 蒋如, 李治模, 等. 三种绿肥对烤烟产质量及土壤养分和酶活性的影响. 中国土壤与肥料, 2023: 1-10. (2023-8-29) [2024-3-27] https: //link.cnki.net/urlid/11.5498.S.20230828.1557.002. | |
10 | Sinsabaugh R L, Follstad Shah J J. Ecoenzymatic stoichiometry and ecological theory. Annual Review of Ecology Evolution and Systematics, 2012, 43(1): 313-343. |
11 | Curtright A J, Tiemann L K. Intercropping increases soil extracellular enzyme activity: A meta-analysis. Agriculture Ecosystems and Environment, 2021, 319(2): 107489. |
12 | Xu M, Li W, Wang J, et al. Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China. Science of the Total Environment, 2022, 815: 152918. |
13 | Yu J, Bing H, Chang R, et al. Microbial metabolic limitation response to experimental warming along an altitudinal gradient in alpine grasslands, eastern Tibetan Plateau. Catena, 2022, 214: 106243. |
14 | Jia R, Zhou J, Chu J, et al. Insights into the associations between soil quality and ecosystem multifunctionality driven by fertilization management: A case study from the North China Plain. Journal of Cleaner Production, 2022, 362: 132265. |
15 | Zheng W, Gong Q, Zhao Z, et al. Changes in the soil bacterial community structure and enzyme activities after intercrop mulch with cover crop for eight years in an orchard. European Journal of Soil Biology, 2018, 86(1): 34-41. |
16 | Wang H, Zhou G P, Chang D N, et al.Nitrogen reduction effects in double rice by planting and returning Chinese milk vetch to the field in Northern Hunan Province. Journal of Plant Nutrition and Fertilizers, 2022, 28(1): 33-44. |
王慧, 周国朋, 常单娜, 等. 湘北双季稻区种植翻压紫云英的氮肥减施效应. 植物营养与肥料学报, 2022, 28(1): 33-44. | |
17 | Zheng W, Gong Q, Lv F, et al. Tree-scale spatial responses of extracellular enzyme activities and stoichiometry to different types of fertilization and cover crop in an apple orchard. European Journal of Soil Biology, 2020, 99(1): 103207. |
18 | Fang Y T, Zhang L M, Jiao Y G, et al. Corrigendum: Tobacco rotated with rapeseed for soil-borne Phytophthora pathogen biocontrol: mediated by rapeseed root exudates. Frontiers in Microbiology, 2018, 9: 372. |
19 | Liu Y X, Zhang H, Yao Y J, et al. Study on the mechanism of biological control of tobacco bacterial wilt with different green manures. Pratacultural Science, 2022, 39(11): 2326-2337. |
刘艳霞, 张恒, 姚云静, 等. 不同绿肥防控烟草青枯病的机理. 草业科学, 2022, 39(11): 2326-2337. | |
20 | Zhao W J, Xue K Z, Yang J Z, et al. Effect of various amounts of smooth vetch on tobacco yield and quality under reduced nitrogen fertilizer application. Jiangsu Agricultural Sciences, 2022, 50(16): 73-78. |
赵文军, 薛开政, 杨继周, 等. 氮肥减施下光叶紫花苕不同翻压量对烟草产量和品质的影响. 江苏农业科学, 2022, 50(16): 73-78. | |
21 | Zha H B, Zhao F, Tao Y P, et al. Effects on the agronomic traits, economic characters and chemical composition of flue-cured tobacco by green manures application. Hubei Agricultural Sciences, 2019, 58(6): 101-103. |
查宏波, 赵芳, 陶永萍, 等. 绿肥翻压还田对连作烟地烤烟农艺性状、经济性状和化学成分的影响. 湖北农业科学, 2019, 58(6): 101-103. | |
22 | Bao S D. Soil agrochemical analysis (the third edition). Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000. | |
23 | Ai C. Carbon and nitrogen transformations and microbial diversity in the rhizosphere soil under long-term fertilization practices. Beijing: Chinese Academy of Agricultural Sciences, 2015. |
艾超. 长期施肥下根际碳氮转化与微生物多样性研究. 北京: 中国农业科学院, 2015. | |
24 | Kuzyakov Y, Gunina K, Zamanian K, et al. New approaches for evaluation of soil health, sensitivity and resistance to degradation. Frontiers of Agricultural Science and Engineering, 2020, 7(3): 282-288. |
25 | Wang P H, Zhang Q W, Shi Y L, et al. Effects of straw mulching and organic fertilizer on the stoichiometry of soil extracellular enzymes in eroded slope farmland. Journal of Plant Nutrition and Fertilizers, 2023, 29(3): 459-471. |
王珮环, 张晴雯, 石玉龙, 等. 秸秆覆盖和配施有机肥对侵蚀坡耕地土壤胞外酶化学计量特征的影响. 植物营养与肥料学报, 2023, 29(3): 459-471. | |
26 | Moorhead D L, Sinsabaugh R L, Hill B H, et al. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biology and Biochemistry, 2016, 93(10): 1-7. |
27 | Wang J L, Sun C F, Cheng Y G, et al. Effects of different green manures on chemical properties and enzyme activities of reclaimed soil. Soil and Fertilizer Sciences in China, 2022(9): 85-93. |
王晋龙, 孙崇凤, 程永钢, 等. 不同绿肥对复垦地土壤化学性状及酶活性的影响. 中国土壤与肥料, 2022(9): 85-93. | |
28 | Thorup-Kristensen K, Magid J, Jensen L S. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Advances in Agronomy, 2003, 79(2): 227-302. |
29 | Zhou G, Gao S, Xu C, et al. Rational utilization of leguminous green manure to mitigate methane emissions by influencing methanogenic and methanotrophic communities. Geoderma, 2020, 361(6): 114071. |
30 | Huang Z, Cui C, Cao Y, et al. Tea plant-legume intercropping simultaneously improves soil fertility and tea quality by changing Bacillus species composition. Horticulture Research, 2022, 9: uhac046 |
31 | Wang L, Guan Y X, Chen Z, et al. Comparison of nutrient accumulation of different green manures and the effects on rice yield. Jiangsu Journal of Agricultural Sciences, 2020, 36(5): 1139-1143. |
王琳, 管永祥, 陈震, 等. 不同种类绿肥养分积累比较及其对水稻产量的影响. 江苏农业学报, 2020, 36(5): 1139-1143. | |
32 | Zhao X, Liu B Y, Liu S L, et al. Sustaining crop production in China’s cropland by crop residue retention: A meta-analysis. Land Degradation and Development, 2020, 31(6): 694-709. |
33 | Zhou G, Gao S, Lu Y, et al. Co-incorporation of green manure and rice straw improves rice production, soil chemical, biochemical and microbiological properties in a typical paddy field in southern China. Soil and Tillage Research, 2020, 197: 104499. |
34 | Ni M Y, Zhang Q F, Gao J T, et al. Seasonal response of extracellular enzyme activity to precipitation exclusion in a subtropical Cunninghamia lanceolata plantation. Acta Ecologica Sinica, 2018, 38(6): 2119-2127. |
倪梦颖, 张秋芳, 高金涛, 等. 亚热带杉木人工林土壤胞外酶活性对隔离降雨的季节响应. 生态学报, 2018, 38(6): 2119-2127. | |
35 | Guo Z M, Zhang X Y, Green S M, et al. Soil enzyme activity and stoichiometry along a gradient of vegetation restoration at the Karst Critical Zone Observatory in Southwest China. Land Degradation and Development, 2019, 30(16): 1916-1927. |
36 | Liu S, Xu G X, Chen M, et al. Effects of slope aspect on soil enzyme activity and microbial nutrient limitation in subalpine region of western Sichuan, China. Chinese Journal of Applied Ecology, 2023, 34(11): 2993-3002. |
刘顺, 许格希, 陈淼, 等. 坡向对川西亚高山土壤酶活性和微生物养分限制的影响. 应用生态学报, 2023, 34(11): 2993-3002. | |
37 | Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 2013, 58(11): 216-234. |
38 | Xu Z W, Yu G R, Zhang X Y, et al. Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology and Biochemistry, 2017, 104(10): 152-163. |
[1] | Li-xing ZHANG, Chun-xing HAI, Yao-wen CHANG, Xiao-mei GAO, Wen-bang GAO, Yun-hu XIE. Evaluation of soil quality in Leymus chinensis-Achnatherumsplendens grassland and in Stipa sareptana grassland [J]. Acta Prataculturae Sinica, 2021, 30(4): 68-79. |
[2] | LIU Jiang, LV Tao, ZHANG Li-xin, YE Li-na, LIU Xiang-yang, DAI Xiang-rong, WANG Wei-wei, DING Ru. Soil quality assessment by principal component analysis in Glycyrrhiza uralensis stands of differing ages [J]. Acta Prataculturae Sinica, 2020, 29(6): 162-171. |
[3] | SU Ting-ting, MA Hong-bin, ZHOU Yao, JIA Xi-yang, ZHANG Rui, ZHANG Shuang-qiao, HU Yan-li. Response of typical steppe grassland soil physical and chemical properties to various ecological restoration measures in the Ningxia Loess Hill Region [J]. Acta Prataculturae Sinica, 2019, 28(4): 34-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||