Acta Prataculturae Sinica ›› 2025, Vol. 34 ›› Issue (3): 17-28.DOI: 10.11686/cyxb2024175
Previous Articles Next Articles
Jia-xin LI1,2,3(), Ya-hong JING1,2,3, Jun ZHANG1,2,3, Si-pu JING1,2,3, Yu-xing YANG1,2,3, Bo-yang FAN1,2,3, Wen-jie LU1,2,3(
)
Received:
2024-05-14
Revised:
2024-07-15
Online:
2025-03-20
Published:
2025-01-02
Contact:
Wen-jie LU
Jia-xin LI, Ya-hong JING, Jun ZHANG, Si-pu JING, Yu-xing YANG, Bo-yang FAN, Wen-jie LU. Analysis of spatial characteristics of soil nutrients in grasslands in the Fenhe River upper reaches using GIS technology and cluster analysis[J]. Acta Prataculturae Sinica, 2025, 34(3): 17-28.
类别 Type | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 自然含水率 Soil water content (%) |
---|---|---|---|---|---|---|---|---|---|
A | 8.39 | 16.9 | 0.89 | 0.37 | 13.25 | 45.44 | 11.40 | 179.95 | 12.5 |
B | 8.38 | 23.7 | 0.80 | 0.40 | 13.32 | 52.88 | 15.31 | 250.40 | 13.3 |
C | 7.90 | 23.4 | 1.19 | 0.35 | 14.68 | 66.71 | 16.17 | 202.59 | 12.1 |
Table 1 Statistics of average content of relevant indicators for each cluster category
类别 Type | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 全磷 Total phosphorus (g·kg-1) | 全钾 Total potassium (g·kg-1) | 碱解氮 Available nitrogen (mg·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 速效钾 Available potassium (mg·kg-1) | 自然含水率 Soil water content (%) |
---|---|---|---|---|---|---|---|---|---|
A | 8.39 | 16.9 | 0.89 | 0.37 | 13.25 | 45.44 | 11.40 | 179.95 | 12.5 |
B | 8.38 | 23.7 | 0.80 | 0.40 | 13.32 | 52.88 | 15.31 | 250.40 | 13.3 |
C | 7.90 | 23.4 | 1.19 | 0.35 | 14.68 | 66.71 | 16.17 | 202.59 | 12.1 |
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
---|---|---|---|---|---|---|
有机质Organic matter | 指数Exponential | 3522.000 | 4982.000 | 0.9660 | 0.827 | 0.707 |
全氮Total nitrogen | 指数Exponential | 0.195 | 0.301 | 0.1170 | 0.159 | 0.648 |
全磷Total phosphorus | 指数Exponential | 0.014 | 0.027 | 0.3960 | 0.396 | 0.519 |
全钾Total potassium | 高斯Gaussian | 6.710 | 9.130 | 0.0282 | 0.842 | 0.735 |
速效磷Available phosphorus | 高斯Gaussian | 109.800 | 109.900 | 0.1143 | 0.521 | 0.999 |
速效钾Available potassium | 高斯Gaussian | 11418.000 | 11430.000 | 0.0918 | 0.681 | 0.999 |
碱解氮Available nitrogen | 高斯Gaussian | 127.089 | 819.194 | 0.4983 | 0.344 | 0.155 |
Table 2 Semivariogram parameters of relevant indicators in 0-10 cm soil layer
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
---|---|---|---|---|---|---|
有机质Organic matter | 指数Exponential | 3522.000 | 4982.000 | 0.9660 | 0.827 | 0.707 |
全氮Total nitrogen | 指数Exponential | 0.195 | 0.301 | 0.1170 | 0.159 | 0.648 |
全磷Total phosphorus | 指数Exponential | 0.014 | 0.027 | 0.3960 | 0.396 | 0.519 |
全钾Total potassium | 高斯Gaussian | 6.710 | 9.130 | 0.0282 | 0.842 | 0.735 |
速效磷Available phosphorus | 高斯Gaussian | 109.800 | 109.900 | 0.1143 | 0.521 | 0.999 |
速效钾Available potassium | 高斯Gaussian | 11418.000 | 11430.000 | 0.0918 | 0.681 | 0.999 |
碱解氮Available nitrogen | 高斯Gaussian | 127.089 | 819.194 | 0.4983 | 0.344 | 0.155 |
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
---|---|---|---|---|---|---|
有机质Organic matter | 高斯Gaussian | 95.500 | 100.100 | 0.1160 | 0.720 | 0.954 |
全氮Total nitrogen | 球面Spherical | 0.137 | 0.176 | 0.1220 | 0.301 | 0.778 |
全磷Total phosphorus | 高斯Gaussian | 0.018 | 0.021 | 0.0237 | 0.168 | 0.857 |
全钾Total potassium | 线性Linear | 0.114 | 8.266 | 0.5211 | 0.216 | 0.014 |
速效磷Available phosphorus | 高斯Gaussian | 92.800 | 92.900 | 0.1160 | 0.539 | 0.999 |
速效钾Available potassium | 高斯Gaussian | 3753.000 | 3843.000 | 0.1126 | 0.669 | 0.977 |
碱解氮Available nitrogen | 高斯Gaussian | 324.812 | 405.809 | 0.0109 | 0.199 | 0.800 |
Table 3 Semivariogram parameters of relevant indicators in 10-20 cm soil layer
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
---|---|---|---|---|---|---|
有机质Organic matter | 高斯Gaussian | 95.500 | 100.100 | 0.1160 | 0.720 | 0.954 |
全氮Total nitrogen | 球面Spherical | 0.137 | 0.176 | 0.1220 | 0.301 | 0.778 |
全磷Total phosphorus | 高斯Gaussian | 0.018 | 0.021 | 0.0237 | 0.168 | 0.857 |
全钾Total potassium | 线性Linear | 0.114 | 8.266 | 0.5211 | 0.216 | 0.014 |
速效磷Available phosphorus | 高斯Gaussian | 92.800 | 92.900 | 0.1160 | 0.539 | 0.999 |
速效钾Available potassium | 高斯Gaussian | 3753.000 | 3843.000 | 0.1126 | 0.669 | 0.977 |
碱解氮Available nitrogen | 高斯Gaussian | 324.812 | 405.809 | 0.0109 | 0.199 | 0.800 |
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
---|---|---|---|---|---|---|
有机质Organic matter | 高斯Gaussian | 72.000 | 78.100 | 0.1386 | 0.877 | 0.922 |
全氮Total nitrogen | 球面Spherical | 0.076 | 0.085 | 0.1130 | 0.344 | 0.894 |
全磷Total phosphorus | 高斯Gaussian | 0.002 | 0.019 | 0.8949 | 0.621 | 0.105 |
全钾Total potassium | 球面Spherical | 3.491 | 5.211 | 0.1140 | 0.782 | 0.670 |
速效磷Available phosphorus | 球面Spherical | 84.300 | 84.400 | 0.1210 | 0.322 | 0.999 |
速效钾Available potassium | 高斯Gaussian | 2323.000 | 2346.000 | 0.1126 | 0.595 | 0.990 |
碱解氮Available nitrogen | 线性Linear | 34.177 | 416.029 | 0.5387 | 0.732 | 0.082 |
Table 4 Semivariogram parameters of relevant indicators in 20-30 cm soil layer
指标 Index | 模型 Model | 块金值 Nugget | 基台值 Sill | 变程 Range (km) | 决定系数 Coefficient of determination | 块基比 Nugget/sill |
---|---|---|---|---|---|---|
有机质Organic matter | 高斯Gaussian | 72.000 | 78.100 | 0.1386 | 0.877 | 0.922 |
全氮Total nitrogen | 球面Spherical | 0.076 | 0.085 | 0.1130 | 0.344 | 0.894 |
全磷Total phosphorus | 高斯Gaussian | 0.002 | 0.019 | 0.8949 | 0.621 | 0.105 |
全钾Total potassium | 球面Spherical | 3.491 | 5.211 | 0.1140 | 0.782 | 0.670 |
速效磷Available phosphorus | 球面Spherical | 84.300 | 84.400 | 0.1210 | 0.322 | 0.999 |
速效钾Available potassium | 高斯Gaussian | 2323.000 | 2346.000 | 0.1126 | 0.595 | 0.990 |
碱解氮Available nitrogen | 线性Linear | 34.177 | 416.029 | 0.5387 | 0.732 | 0.082 |
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|
全局Moran’s I Global Moran’s I | 0.2658 | 0.4474 | 0.3960 | 0.4362 | 0.1370 | 0.4622 | 0.2828 |
期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
Z得分Z-score | 5.2587 | 8.5908 | 7.6456 | 8.3317 | 3.2968 | 8.7899 | 5.6114 |
P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 5 Global spatial autocorrelation of relevant indicators in 0-10 cm soil layer
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|
全局Moran’s I Global Moran’s I | 0.2658 | 0.4474 | 0.3960 | 0.4362 | 0.1370 | 0.4622 | 0.2828 |
期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
Z得分Z-score | 5.2587 | 8.5908 | 7.6456 | 8.3317 | 3.2968 | 8.7899 | 5.6114 |
P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|
全局Moran’s I Global Moran’s I | 0.2833 | 0.4605 | 0.3704 | 0.3920 | 0.1237 | 0.4313 | 0.3225 |
期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
Z得分Z-score | 6.0331 | 8.8491 | 7.2553 | 7.5594 | 3.1378 | 8.2096 | 6.5015 |
P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 6 Global spatial autocorrelation of relevant indicators in 10-20 cm soil layer
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|
全局Moran’s I Global Moran’s I | 0.2833 | 0.4605 | 0.3704 | 0.3920 | 0.1237 | 0.4313 | 0.3225 |
期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
Z得分Z-score | 6.0331 | 8.8491 | 7.2553 | 7.5594 | 3.1378 | 8.2096 | 6.5015 |
P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|
全局Moran’s I Global Moran’s I | 0.3583 | 0.4340 | 0.2966 | 0.4214 | 0.1165 | 0.4578 | 0.3123 |
期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
Z得分Z-score | 7.1145 | 8.3263 | 5.9307 | 8.0531 | 3.2930 | 8.6996 | 6.3315 |
P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table 7 Global spatial autocorrelation of relevant indicators in 20-30 cm soil layer
指标 Index | 有机质 Organic matter | 全氮 Total nitrogen | 碱解氮 Available nitrogen | 全磷 Total phosphorus | 速效磷 Available phosphorus | 全钾 Total potassium | 速效钾 Available potassium |
---|---|---|---|---|---|---|---|
全局Moran’s I Global Moran’s I | 0.3583 | 0.4340 | 0.2966 | 0.4214 | 0.1165 | 0.4578 | 0.3123 |
期望值Expectations | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 | -0.0076 |
Z得分Z-score | 7.1145 | 8.3263 | 5.9307 | 8.0531 | 3.2930 | 8.6996 | 6.3315 |
P检验P-test | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | Dong S K, Zhang Y H, Wang G C. Assessment of grassland health and degradation: Concepts, principles and methods. Pratacultural Science, 2023, 40(12): 2971-2981. |
董世魁, 张宇豪, 王冠聪. 草地健康与退化评价:概念、原理及方法. 草业科学, 2023, 40(12): 2971-2981. | |
2 | Wang Y F. Evaluation of soil conservation function of regional ecosystem in the upper reaches of Fenhe River. Beijing: China University of Geosciences, 2021. |
王怡帆. 汾河上游生态系统土壤保持功能评价. 北京: 中国地质大学, 2021. | |
3 | Fu W, Zhao K, Zhang C, et al. Using Moran’s I and geostatistics to identify spatial patterns of soil nutrients in two different long-term phosphorus-application plots. Journal of Plant Nutrition and Soil Science, 2011, 174(5): 785-798. |
4 | Li Q Q, Wang C Q, Zhang W J, et al. Prediction of soil nutrients spatial distribution based on neural network model combined with geostatistics. Chinese Journal of Applied Ecology, 2013, 24(2): 459-466. |
李启权, 王昌全, 张文江, 等. 基于神经网络模型和地统计学方法的土壤养分空间分布预测. 应用生态学报, 2013, 24(2): 459-466. | |
5 | Wang X Y, Huang Y L, Quan B B, et al. Spatial variation characteristics and influencing factors of available nutrient elements in cultivated soil layers in Rui’an City, Zhejiang Province. Geoscience, 2022, 36(3): 963-971. |
王学寅, 黄益灵, 全斌斌, 等. 浙江省瑞安市耕作层土壤养分元素有效态含量空间变异特征及其影响因素. 现代地质, 2022, 36(3): 963-971. | |
6 | Chen Q X, Lu X H, Tu C L. Spatial variation and influencing factors of soil pH in Anshun City. Environmental Science, 2022, 43(4): 2124-2132. |
陈清霞, 陆晓辉, 涂成龙. 安顺市土壤pH空间变异及影响因素分析. 环境科学, 2022, 43(4): 2124-2132. | |
7 | Bei Q C, Thomas R, Beatrix S, et al. Extreme summers impact cropland and grassland soil microbiomes. The ISME Journal, 2023, 17(10): 1589-1600. |
8 | Seaton F M, Gaynor B, Annette B, et al. Soil health cluster analysis based on national monitoring of soil indicators. European Journal of Soil Science, 2020, 72(6): 2414-2429. |
9 | Fan X L, Lv X, Zhang Z, et al. Soil nutrient evaluation of cotton field based on distance clustering and K-means dynamic clustering. Arid Zone Research, 2021, 38(4): 980-989. |
范向龙, 吕新, 张泽, 等. 基于距离聚类与K-means动态聚类的棉田土壤养分评价研究. 干旱区研究, 2021, 38(4): 980-989. | |
10 | Jiang X L. Comprehensive evaluation of soil nutrients geochemistry in Yongtai County based on principal component and cluster analysis. Journal of Anhui Agricultural Sciences, 2023, 51(1): 68-71. |
江晓龙.基于主成分和聚类分析的永泰县土壤养分地球化学综合评价. 安徽农业科学, 2023, 51(1): 68-71. | |
11 | Jin Z L, Chen M S, Shao L J, et al. Yongzhou tobacco-growing soil: Main chemical characteristics and cluster analysis. Journal of Agriculture, 2021, 11(8): 37-41. |
靳志丽, 陈梦思, 邵兰军, 等. 永州植烟土壤几种主要化学性状特征及聚类分析. 农学学报, 2021, 11(8): 37-41. | |
12 | Tan G J, Zhang S Y, Liu D P, et al. Habitat heterogeneity of grassland community characteristics in the Horchin elm sparse forest. Journal of Inner Mongolia Minzu University (Natural Science Edition), 2023, 38(4): 347-352. |
谭国娟, 张淑艳, 刘殿鹏, 等. 科尔沁榆树疏林草原群落特征的生境分异性研究. 内蒙古民族大学学报(自然科学版), 2023, 38(4): 347-352. | |
13 | Hou L, Ma Y J, Wang G L, et al. Distribution of soil nutrient and its relationship with mechanical composition of abandoned farmland in the upper reaches of Fenhe River watershed. Journal of Shanxi Agricultural Sciences, 2019, 47(8): 1422-1427. |
侯丽, 马义娟, 王国玲, 等. 汾河上游流域弃耕地土壤养分及其与机械组成的关系. 山西农业科学, 2019, 47(8): 1422-1427. | |
14 | Bao S D. Soil and agricultural chemistry analysis. Beijing: China Agriculture Press, 2000. |
鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. | |
15 | Li J, Zhang J Y, Wang R, et al. Comparison of determinations of available P of calcareous soil. Ningxia Journal of Agriculture and Forestry Science and Technology, 2017, 58(11): 31-33. |
李娟, 张静月, 王蓉, 等. 两种石灰性土壤有效磷测定方法比较. 宁夏农林科技, 2017, 58(11): 31-33. | |
16 | Shang H Y, Qi J S, Mao S Y, et al. Correlation between two methods for determining soil available phosphorus and available potassium. Gansu Agricultural Science and Technology, 2010(5): 28-29. |
尚海英, 祁居仕, 毛森煜, 等. 两种测定土壤有效磷和速效钾方法的相关性. 甘肃农业科技, 2010(5): 28-29. | |
17 | Guo H J, Cai Y P, Li B W, et al. An improved approach for evaluating landscape ecological risks and exploring its coupling coordination with ecosystem services. Journal of Environmental Management, 2023, 348: 119277. |
18 | Han L L, Lu Y C, Ma W, et al. Spatial patterns of poil organic matter, nitrogen, phosphorus and potassium in a subtropical forest and its implication for forest management. Journal of Resources and Ecology, 2022, 13(3): 417-427. |
19 | Qiu M, Zuo Q T, Wu Q S, et al. Water ecological security assessment and spatial autocorrelation analysis of prefectural regions involved in the Yellow River Basin. Scientific Reports, 2022, 12(1): DOI: 10.1038/S41598-022-07656-9. |
20 | Liang Y L, Li J, Lu Y H, et al. Ecosystem service value evaluation and temporal-spatial evolution characteristics in an agro-pastoral ecotone of Gansu Province based on LUCC. Acta Prataculturae Sinica, 2023, 32(5): 13-26. |
梁赟亮, 李杰, 陆燕花, 等. 基于LUCC的甘肃省农牧交错带生态系统服务价值评估及时空演变特征研究. 草业学报, 2023, 32(5): 13-26. | |
21 | Zhang R T, Chen M. Spatial differentiation and driving mechanism of agricultural multifunctions in economically developed areas: A case study of Jiangsu Province, China. Land, 2022, 11(10): 1728. |
22 | Wu H Y, Jin R D, Fan Z W, et al. Assessment of fertility quality of black soil based on principal component and cluster analysis. Journal of Plant Nutrition and Fertilizers, 2018, 24(2): 325-334. |
吴海燕, 金荣德, 范作伟, 等. 基于主成分和聚类分析的黑土肥力质量评价. 植物营养与肥料学报, 2018, 24(2): 325-334. | |
23 | Zuo X H, Lai J X, Liu F, et al. Spatial heterogeneity and zoning of soil organic matter based on geostatistics and spatial autocorrelation: a perspective form land consolidation. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(3): 240-252. |
左昕弘, 赖佳鑫, 刘峰, 等. 基于地统计学和空间自相关的土壤有机质空间异质性分析及分区——土地整治视角. 中国农业资源与区划, 2022, 43(3): 240-252. | |
24 | Lei J R, Chen Z Z, Wu T T, et al. Spatial autocorrelation pattern analysis of land use and the value of ecosystem service in northeast Hainan island. Acta Ecologica Sinica, 2019, 39(7): 2366-2377. |
雷金睿, 陈宗铸, 吴庭天, 等. 海南岛东北部土地利用与生态系统服务价值空间自相关格局分析. 生态学报, 2019, 39(7): 2366-2377. | |
25 | Zhao C Y, Liu Y Y, Shi X P, et al. Effects of soil nutrient variability and competitor identify on growth and co-existence among invasive alien and native clonal plants. Environmental Pollution, 2020, 261(C): 113894. |
26 | Jiang N W, Tong G P, Ye Z Q, et al. Spatial variability of soil fertility properties and its affecting factors of Qingliangfeng Nature Reserve, Zhejiang. Acta Ecologica Sinica, 2022, 42(6): 2430-2441. |
姜霓雯, 童根平, 叶正钱, 等. 浙江清凉峰自然保护区土壤肥力指标空间变异及其影响因素. 生态学报, 2022, 42(6): 2430-2441. | |
27 | Tong T, Mei S, Liu Y, et al. Spatial variation of soil nutrient characteristics around Chaohu Lake based on GIS results. Journal of Agro-Environment Science, 2023, 42(7): 1522-1531. |
童童, 梅帅, 刘莹, 等. 基于GIS的环巢湖地区土壤养分空间变异特征研究. 农业环境科学学报, 2023, 42(7): 1522-1531. | |
28 | Wang T, Kang F F, Cheng X Q, et al. Spatial variability of organic carbon and total nitrogen in the soils of a subalpine forested catchment at Mt. Taiyue, China. Catena, 2017, 155: 41-52. |
29 | Liu M J, Xu Z K, Gao Y B, et al. Estimating soil organic matter based on machine learning under sparse sample. Journal of Geo-information Science, 2020, 22(9): 1799-1813. |
刘明杰, 徐卓揆, 郜允兵, 等. 基于机器学习的稀疏样本下的土壤有机质估算方法. 地球信息科学学报, 2020, 22(9): 1799-1813. | |
30 | Yang J H, Liu M Y, Zhang J, et al. Spatial variability of soil nutrients and its affecting factors at small watershed in gully region of the Loess Plateau. Journal of Natural Resources, 2020, 35(3): 743-754. |
杨静涵, 刘梦云, 张杰, 等. 黄土高原沟壑区小流域土壤养分空间变异特征及其影响因素. 自然资源学报, 2020, 35(3): 743-754. | |
31 | Niu W P, Li Q P, Li C, et al. Multi-scale spatial variability and environmental drivers of soil nutrient distributions in the Pearl River Delta, South China. Ecology and Environmental Sciences, 2021, 30(4): 743-755. |
牛文鹏, 李青圃, 李铖, 等. 珠江三角洲土壤养分多尺度空间分异及环境驱动力. 生态环境学报, 2021, 30(4): 743-755. | |
32 | Gao G, Tuo D, Han X, et al. Effects of land-use patterns on soil carbon and nitrogen variations along revegetated hillslopes in the Chinese Loess Plateau. Science of the Total Environment, 2020, 746: 141156. |
33 | Rigon G P J, Calonego J C, Capuani S, et al. Soil organic C affected by dry-season management of no-till soybean crop rotations in the tropics. Plant and Soil, 2021, 462(1): 1-14. |
34 | Rui Y C, Jackson R D, Francesca M C, et al. Persistent soil carbon enhanced in mollisols by well-managed grasslands but not annual grain or dairy forage cropping systems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(7): DOI: 10.1073/PNAS.2118931119. |
35 | Zhang H, Zhao X M, Ouyang Z C, et al. Spatial disparity features and protection zoning of cultivated land quality based on spatial autocorrelation-A case study of Shanggao County, Jiangxi Province. Research of Soil and Water Conservation, 2018, 25(1): 304-312. |
张晗, 赵小敏, 欧阳真程, 等. 基于空间自相关的耕地质量空间差异特征及耕地保护分区——以江西省上高县为例. 水土保持研究, 2018, 25(1): 304-312. | |
36 | Wu Y G, Ulan T Y, Zhang W Q, et al. Analysis of the evolution of the grassland degradation evaluation index system in China based on CiteSpace. Chinese Journal of Grassland, 2023, 45(5): 125-136. |
乌云嘎, 乌兰图雅, 张卫青, 等. 基于CiteSpace的中国草地退化评价指标体系演进分析. 中国草地学报, 2023, 45(5): 125-136. |
[1] | Wan-yang YU, Yi-fan CHEN, Fa-yong FANG, Jin-xin ZHANG, Zhou LI, Long-shan ZHAO. An analysis of grassland spatial distribution and driving forces of patterns of change in grassland distribution in Guizhou Province from 1980 to 2020 [J]. Acta Prataculturae Sinica, 2024, 33(1): 1-18. |
[2] | Chun-yan LI, Yan WANG, Xin-rui LI, Ying-zhu LI, Ming-feng LI, Li-li CHEN, Xiong LEI, Li-jun YAN, Ming-hong YOU, Xiao-fei JI, Chang-bing ZHANG, Qi WU, Wen-long GOU, Da-xu LI, Jia-jun YAN, Shi-qie BAI. Morphological diversity and germplasm utilization potential of wild Elymus sibiricus [J]. Acta Prataculturae Sinica, 2023, 32(3): 67-79. |
[3] | Lu-juan SUN, Jian-jun HE, Jun-cheng WANG, Li-rong YAO, Er-jing SI, Ke YANG, Bao-chun LI, Xiao-le MA, Xun-wu SHANG, Ya-xiong MENG, Hua-jun WANG. Development of SSR markers based on full-length transcriptome sequencing and genetic diversity analysis of Halogeton glomeratus [J]. Acta Prataculturae Sinica, 2022, 31(8): 199-210. |
[4] | Wen-jing REN, Yu-hu LV, Guo-peng ZHOU, Dan-na CHANG, Chun-yang XIANG, Wei-dong CAO. Evaluation of agronomic traits and nutrient absorption of an F4 recombinant inbred line of Chinese milk vetch (Astragalus sinicus) [J]. Acta Prataculturae Sinica, 2022, 31(2): 101-110. |
[5] | Zi-ying CHEN, Dan-na CHANG, Mei HAN, Zheng-peng LI, Qing-biao YAN, Jiu-dong ZHANG, Guo-peng ZHOU, Xiao-feng SUN, Wei-dong CAO. Capability evaluation of 47 common vetch cultivars (lines) as autumn green manure in Qinghai Province, Northwest China [J]. Acta Prataculturae Sinica, 2022, 31(2): 39-51. |
[6] | Ji-xiang WANG, Huan-yu GONG, Xiang-jian TU, Zhen-xing GUO, Jia-nan ZHAO, Jian SHEN, Zhen-yi LI, Juan SUN. Screening of phosphite-tolerant alfalfa varieties and identification of phosphite tolerance indicators [J]. Acta Prataculturae Sinica, 2021, 30(5): 186-199. |
[7] | Dou-dou LIN, Gui-qin ZHAO, Ze-liang JU, Wen-long GONG. Comprehensive evaluation of drought resistance of 15 oat varieties at the seedling stage [J]. Acta Prataculturae Sinica, 2021, 30(11): 108-121. |
[8] | LEI Xiong, YOU Ming-hong, BAI Shi-qie, CHEN Li-li, DENG Pei-hua, XIONG Yi, XIONG Yan-li, YU Qing-qing, MA Xiao, YANG Jian, ZHANG Chang-bing. Genetic diversity analysis and multivariate evaluation of agronomic traits of 50 oat germplasm lines in northwest Sichuan [J]. Acta Prataculturae Sinica, 2020, 29(7): 131-142. |
[9] | GUO Zhi-peng, FENG Chang-song, ZHANG Jing-xue, WANG Miao-li, QU Gen, LIU Jian-yu, GUAN Yong-zhuo, ZHANG Xiao-ting, GUO Yu-xia, YAN Xue-bing. Field resistance to alfalfa mosaic virus among 30 alfalfa varieties [J]. Acta Prataculturae Sinica, 2019, 28(4): 157-167. |
[10] | WANG Jian-li, MA Li-chao, SHEN Zhong-bao, LIU Jie-lin, ZHU Rui-fen, HAN Wei-bo, ZHONG Peng, DI Gui-li, HAN Gui-qing, GUO Chang-hong. An evaluation of agronomic traits and genetic diversity among 51 oat germplasm accessions [J]. Acta Prataculturae Sinica, 2019, 28(2): 133-141. |
[11] | CHAI Yan, SUN Zong-Jiu, LI Pei-Ying, BADEMU Qiqige, ZHANG Xiang-Xiang, YANG Jing. Evaluation of the salt resistance of the Cynodon dactylon germplasm from Xinjiang during the seed germination period [J]. Acta Prataculturae Sinica, 2017, 26(8): 154-167. |
[12] | GENG Fan, ZHOU Qing-Ping, LIANG Guo-Ling, JIA Zhi-Feng, LIU Wen-Hui, DING Cheng-Xiang, LIU Yong, YAN Hong-Bo. Karyotype study of 8 kinds of Avena nuda [J]. Acta Prataculturae Sinica, 2016, 25(3): 120-125. |
[13] | MENG Li-Juan, ZHAO Gui-Qin. Evaluation of the adaptability of imported red clover germplasm in central Gansu [J]. Acta Prataculturae Sinica, 2015, 24(9): 30-42. |
[14] | ZHOU Qing-Ping, YAN Hong-Bo, LIANG Guo-Ling, JIA Zhi-Feng, LIU Wen-Hui, TIAN Li-Hua, CHEN You-Jun, CHEN Shi-Yong. Analysis of the forage and grain productivity of oat cultivars [J]. Acta Prataculturae Sinica, 2015, 24(10): 120-130. |
[15] | GAO Xing-xiang,LI Mei,FANG Feng,ZHANG Yue-li,SUN Zuo-wen,QI Jun-shan. Species composition and characterization of weed communities in wheat fields in Shandong Province [J]. Acta Prataculturae Sinica, 2014, 23(5): 92-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||