Acta Prataculturae Sinica ›› 2026, Vol. 35 ›› Issue (4): 221-232.DOI: 10.11686/cyxb2025155
Yi-di GUO1,2(
), Ling-yun LIU2, Xi-feng FAN2, Yue-sen YUE2, Na MU2, Zhi-hui CHANG1(
), Ke TENG2(
)
Received:2025-04-24
Revised:2025-07-10
Online:2026-04-20
Published:2026-02-07
Contact:
Zhi-hui CHANG,Ke TENG
Yi-di GUO, Ling-yun LIU, Xi-feng FAN, Yue-sen YUE, Na MU, Zhi-hui CHANG, Ke TENG. Progress in genomic research on Pennisetum[J]. Acta Prataculturae Sinica, 2026, 35(4): 221-232.
材料 Materials | 物种 Species | 测序和组装方法 Sequencing and assembly methods | 支架N50 Scaffold N50 | 重叠群N50 Contig N50 | 基因组大小 Genome size | 基因数量 Gene No. | 文献 Reference |
|---|---|---|---|---|---|---|---|
| Tift 23D2B1-P1-P5 | PA | Illlumina WGS/BAC+Multiple | 0.88 Mb | 0.02 Mb | 1.76 Gb | 38579 | [ |
| PI537069 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 266.84 Mb | 61.62Mb | - | 35486 | [ |
| PI521612 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 278.46 Mb | 5.40 Mb | - | 37906 | [ |
| PI587025 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 257.50 Mb | 5.15 Mb | - | 38076 | [ |
| PI583800 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 261.45 Mb | 3.10 Mb | - | 35826 | [ |
| Tifleaf3 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 279.17 Mb | 25.57 Mb | - | 37280 | [ |
| PI526529 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 286.98 Mb | 79.18 Mb | - | 36451 | [ |
| PI186338 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 284.64 Mb | 3.80 Mb | - | 36343 | [ |
| PI343841 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 263.66 Mb | 5.10 Mb | - | 36312 | [ |
| PI527388 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 193.80 Mb | 3.10 Mb | - | 37866 | [ |
| PI250656 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 276.63 Mb | 4.20 Mb | - | 36923 | [ |
| Tift23D2B1-P1-P5 | PA | PacBio HiFi+hifasm+BioNano | 279.00 Mb | 129.40 Mb | - | 50339 | [ |
| ICMR 06777 | PA | PacBio HiFi+hifasm+BioNano | 144.60 Mb | 71.70 Mb | - | 57822 | [ |
| 843 B | PA | PacBio HiFi+hifasm+BioNano | 144.00 Mb | 126.50 Mb | - | 54176 | [ |
| Tift23D2B1-P1-P5 | PA | Oxford nanopore+Bionaon | 81.82 Mb | 1.15 Mb | 1.94 Gb | 36898 | [ |
| Aw | PA | PacBio HiFi+Omni-C | - | 284.00 Mb | 1.92 Gb | 38920 | [ |
| P10 | PA | PacBio HiFi+Omni-C | - | 244.00 Mb | 1.93 Gb | 40869 | [ |
| 紫色象草Purple | PP | Oxford nanopore technologies+Hi-C | 455.00 bp | 1.83 Mb | 2.01 Gb | 65927 | [ |
| CIAT6263 | PP | Nanopore+HiC | 8.47 Mb | 2.90 Mb | 2.07 Gb | 77139 | [ |
| 丽秋 Liqiu | PAL | PacBio+Illumina+Hi-C | 91.33 Mb | 84.83 Mb | 845.71 Mb | 34312 | [ |
| P. giganteum | PF | PacBio+Hi-C | - | 88.47 Mb | 2.03 Gb | - | [ |
| JUJUNCAO | PF | PacBio HiFi+Hi-C | - | 134.10 Mb | 1.99 Gb | 68526 | [ |
Table 1 Research progress of genome sequencing of Pennisetum
材料 Materials | 物种 Species | 测序和组装方法 Sequencing and assembly methods | 支架N50 Scaffold N50 | 重叠群N50 Contig N50 | 基因组大小 Genome size | 基因数量 Gene No. | 文献 Reference |
|---|---|---|---|---|---|---|---|
| Tift 23D2B1-P1-P5 | PA | Illlumina WGS/BAC+Multiple | 0.88 Mb | 0.02 Mb | 1.76 Gb | 38579 | [ |
| PI537069 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 266.84 Mb | 61.62Mb | - | 35486 | [ |
| PI521612 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 278.46 Mb | 5.40 Mb | - | 37906 | [ |
| PI587025 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 257.50 Mb | 5.15 Mb | - | 38076 | [ |
| PI583800 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 261.45 Mb | 3.10 Mb | - | 35826 | [ |
| Tifleaf3 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 279.17 Mb | 25.57 Mb | - | 37280 | [ |
| PI526529 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 286.98 Mb | 79.18 Mb | - | 36451 | [ |
| PI186338 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 284.64 Mb | 3.80 Mb | - | 36343 | [ |
| PI343841 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 263.66 Mb | 5.10 Mb | - | 36312 | [ |
| PI527388 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 193.80 Mb | 3.10 Mb | - | 37866 | [ |
| PI250656 | PA | PacBio HiFi+Bionano+Hi-C+Illumina | 276.63 Mb | 4.20 Mb | - | 36923 | [ |
| Tift23D2B1-P1-P5 | PA | PacBio HiFi+hifasm+BioNano | 279.00 Mb | 129.40 Mb | - | 50339 | [ |
| ICMR 06777 | PA | PacBio HiFi+hifasm+BioNano | 144.60 Mb | 71.70 Mb | - | 57822 | [ |
| 843 B | PA | PacBio HiFi+hifasm+BioNano | 144.00 Mb | 126.50 Mb | - | 54176 | [ |
| Tift23D2B1-P1-P5 | PA | Oxford nanopore+Bionaon | 81.82 Mb | 1.15 Mb | 1.94 Gb | 36898 | [ |
| Aw | PA | PacBio HiFi+Omni-C | - | 284.00 Mb | 1.92 Gb | 38920 | [ |
| P10 | PA | PacBio HiFi+Omni-C | - | 244.00 Mb | 1.93 Gb | 40869 | [ |
| 紫色象草Purple | PP | Oxford nanopore technologies+Hi-C | 455.00 bp | 1.83 Mb | 2.01 Gb | 65927 | [ |
| CIAT6263 | PP | Nanopore+HiC | 8.47 Mb | 2.90 Mb | 2.07 Gb | 77139 | [ |
| 丽秋 Liqiu | PAL | PacBio+Illumina+Hi-C | 91.33 Mb | 84.83 Mb | 845.71 Mb | 34312 | [ |
| P. giganteum | PF | PacBio+Hi-C | - | 88.47 Mb | 2.03 Gb | - | [ |
| JUJUNCAO | PF | PacBio HiFi+Hi-C | - | 134.10 Mb | 1.99 Gb | 68526 | [ |
| [1] | Wu J Y, Teng W J, Wang Q H. Basic botanic characters, adaptabilities and applying in landscape architecture of Pennisetum alopecuroides. Chinese Landscape Architecture, 2005, 21(12): 57-59. |
| 武菊英, 滕文军, 王庆海. 狼尾草的生物学特性及在园林中的应用. 中国园林, 2005, 21(12): 57-59. | |
| [2] | Hou X C, Teng K, Guo Q, et al. Research advances in forage Pennisetum resource. Chinese Bulletin of Botany, 2022, 57(6): 814-825. |
| 侯新村, 滕珂, 郭强, 等. 狼尾草属牧草研究进展. 植物学报, 2022, 57(6): 814-825. | |
| [3] | Chen C, Yuan X H, Teng W J, et al. Biological characteristics,ecological adaptability,ornamentality,and invasion risk of Pennisetum species. Chinese Journal of Ecology, 2017, 36(2): 374-381. |
| 陈超, 袁小环, 滕文军, 等. 狼尾草属植物生物学特性、生态适应性、观赏性和入侵风险关系的探讨. 生态学杂志, 2017, 36(2): 374-381. | |
| [4] | Dudhate A, Shinde H, Tsugama D, et al. Transcriptomic analysis reveals the differentially expressed genes and pathways involved in drought tolerance in pearl millet [Pennisetum glaucum (L.) R. Br]. PLoS One, 2018, 13(4): e0195908. |
| [5] | Vadez V, Hash T, Bidinger F R, et al. Phenotyping pearl millet for adaptation to drought. Frontiers in Physiology, 2012, 3: 386. |
| [6] | Kebede G, Feyissa F, Assefa G, et al. Agronomic performance, dry matter yield stability and herbage quality of Napier grass [Pennisetum purpureum (L.) Schumach] accessions in different agro-ecological zones of Ethiopia. Journal of Agricultural & Crop Research, 2017, 4(5): 49-65. |
| [7] | Daud Z, Mohd H M Z, Mohd K A S, et al. Analysis of napier grass (Pennisetum purpureum) as a potential alternative fibre in paper industry. Materials Research Innovations, 2014, 18(6): 18-20. |
| [8] | Eliana C, Jorge R, Juan P, et al. Effects of the pretreatment method on enzymatic hydrolysis and ethanol fermentability of the cellulosic fraction from elephant grass. Fuel, 2014, 118: 41-47. |
| [9] | Kumar S, Saxena S, Rai A, et al. Ecological, genetic, and reproductive features of Cenchrus species indicate evolutionary superiority of apomixis under environmental stresses. Ecological Indicators, 2019, 105: 126-136. |
| [10] | Guo Y D, Liu L Y, Yue Y S, et al. Development of SSR markers based on transcriptome sequencing and verification of their conservation across species of ornamental Pennisetum Rich. (Poaceae). Agronomy, 2022, 12(7): 1683. |
| [11] | Xu J, Liu C, Song Y, et al. Comparative analysis of the chloroplast genome for four Pennisetum species: Molecular structure and phylogenetic relationships. Frontiers in Genetics, 2021, 12:687844. |
| [12] | Lin Z X, Lin D M, Liu Z J, et al. Cenchrus fungigraminus Z.X.Lin & D.M.Lin & S.R.Lan sp.nov.,a new species of Panicoideae ( Poaceae) : Evidence from morphological,nuclear and plastid genome data.Journal of Forest and Environment, 2022, 42(5): 514-520. |
| 林占熺, 林冬梅, 刘仲健, 等. 基于形态和基因组证据的禾本科新种——巨菌草. 森林与环境学报, 2022, 42(5): 514-520. | |
| [13] | Sanger F, Coulson A R. A rapid method for determining sequences in DNA. Journal of Molecular Biology, 1975, 94(3): 441-448. |
| [14] | Ronaghi M, Uhlen M, Nyren P. A sequencing method based on real-time pyrophosphate. Science, 1998, 5375(281): 363-365. |
| [15] | Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules. Science, 2009, 5910(323): 133-138. |
| [16] | Tang D, Zhou Q. Research advances in plant genome assembly. Biotechnology Bulletin, 2021, 37(6): 1-12. |
| 唐蝶, 周倩. 植物基因组组装技术研究进展. 生物技术通报, 2021, 37(6): 1-12. | |
| [17] | Pendleton M, Sebra R, Pang A W C, et al. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nature Methods, 2015, 12(8): 780-786. |
| [18] | Dudchenko O, Batra S S, Omer A D, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science, 2017, 356(6333): 92-95. |
| [19] | Hu Y W, Chen L. Research advance and applications in maize wild relatives genomes. Biotechnology Bulletin, 2024, 40(3): 14-24. |
| 胡伊娃, 陈露. 玉米野生种基因组研究进展及应用. 生物技术通报, 2024, 40(3): 14-24. | |
| [20] | Varshney R K, Shi C, Thudi M, et al. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nature Biotechnology, 2017, 35(10): 969-976. |
| [21] | Yan H D, Sun M, Zhang Z R, et al. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics, 2023, 55(3): 507-518. |
| [22] | Tang J, Zhou H L, Wang W Q, et al. Advances in breeding and molecular biology research of Pennisetum. Chinese Journal of Tropical Crops, 2018, 39(11): 2313-2320. |
| 唐军, 周汉林, 王文强, 等. 狼尾草属牧草育种及分子生物学研究进展. 热带作物学报, 2018, 39(11): 2313-2320. | |
| [23] | Jing H C, Hu W J, Jin J B, et al. Accelerate innovation of forage intelligent breeding technology: Reflection and suggestions. Bulletin of Chinese Academy of Sciences, 2025, 40(2): 310-319. |
| 景海春, 胡伟娟, 金京波, 等. 加快饲草智能育种科技创新的思考与建议. 中国科学院院刊, 2025, 40(2): 310-319. | |
| [24] | Song S H, Tian D M, Zhang Z, et al. Rice genomics: Over the past two decades and into the future. Genomics, Proteomics & Bioinformatics, 2018, 16(6): 397-404. |
| [25] | Schnable J C. Genome evolution in maize: From genomes back to genes. Annual Review Plant Biology, 2015, 66(1): 329-343. |
| [26] | Wang X, Xu Y Y, Xu Y, et al. Research progress in genomic selection breeding technology for crops. Biotechnology Bulletin, 2024, 40(3): 1-13. |
| 王欣, 徐一亿, 徐扬, 等. 作物全基因组选择育种技术研究进展. 生物技术通报, 2024, 40(3): 1-13. | |
| [27] | Sun M, Yan H D, Zhang A L, et al. Milletdb: A multi-omics database to accelerate the research of functional genomics and molecular breeding of millets. Plant Biotechnology Journal, 2023, 21(11): 2348-2357. |
| [28] | Salson M, Orjuela J, Mariac C, et al. An improved assembly of the pearl millet reference genome using oxford nanopore long reads and optical mapping. G3-Genes, Genomes, Genetics, 2023, 13(5): jkad051. |
| [29] | Ramu P, Srivastava R K, Sanyal A, et al. Improved pearl millet genomes representing the global heterotic pool offer a framework for molecular breeding applications. Communications Biology, 2023, 6(1): 902. |
| [30] | Kuijer H N J, Wang J Y, Bougouffa S, et al. Chromosome-scale pearl millet genomes reveal CLAMT1b as key determinant of strigolactone pattern and striga susceptibility. Nature Communications, 2024, 15(1): 1-12. |
| [31] | Paudel D, Kannan B, Yang X P, et al. Surveying the genome and constructing a high-density genetic map of napiergrass (Cenchrus purpureus Schumach). Scientific Reports, 2018, 8(1): 14419. |
| [32] | Yan Q, Wu F, Xu P, et al. The elephant grass (Cenchrus purpureus) genome provides insights into anthocyanidin accumulation and fast growth. Molecular Ecology Resources, 2021, 21(2): 526-542. |
| [33] | Zhang S K, Xia Z Q, Li C, et al. Chromosome-scale genome assembly provides insights into speciation of allotetraploid and massive biomass accumulation of elephant grass (Pennisetum purpureum Schum.). Molecular Ecology Resources, 2022, 22(6): 2363-2378. |
| [34] | Zhang Y, Yuan X H, Teng W J, et al. Karyotype diversity analysis and nuclear genome size estimation for Pennisetum Rich. (Poaceae) ornamental grasses reveal genetic relationship and chromosomal evolution. Scientia Horticulturae, 2015, 193: 22-31. |
| [35] | Teng K, Guo Q, Liu L Y, et al. Chromosome-level reference genome assembly provides insights into the evolution of Pennisetum alopecuroides. Frontiers in Plant Science, 2023, 14: 1195479. |
| [36] | Xing L S, Wang M J, He Q, et al. Differential subgenome expression underlies biomass accumulation in allotetraploid Pennisetum giganteum. BMC Biology, 2023, 21(1): 161. |
| [37] | Zheng H K, Wang B Y, Hua X T, et al. A near-complete genome assembly of the allotetrapolyploid Cenchrus fungigraminus (jujucao) provides insights into its evolution and C4 photosynthesis. Plant Communications, 2023, 4(5): 100633. |
| [38] | Burgarella C, Cubry P, Kane N A, et al. A western Sahara centre of domestication inferred from pearl millet genomes. Nature Ecology &Evolution, 2018, 2(9): 1377-1380. |
| [39] | Muktar M S, Teshome A, Hanson J, et al. Genotyping by sequencing provides new insights into the diversity of napier grass (Cenchrus purpureus) and reveals variation in genome-wide LD patterns between collections. Scientific Reports, 2019, 9(1):6936. |
| [40] | Wang C R, Yan H D, Li J, et al. Genome survey sequencing of purple elephant grass (Pennisetum purpureum Schum ‘Zise’) and identification of its SSR markers. Molecular Breeding, 2018, 38(7): 795-800. |
| [41] | Yan H D, Jin Y R, Yu H P, et al. Genomic selection for agronomical phenotypes using genome-wide SNPs and SVs in pearl millet. Theoretical and Applied Genetics, 2024, 137(10): 185-192. |
| [42] | Ouyang W Z, Xiong D, Li G L, et al. Unraveling the 3D genome architecture in plants: present and future. Molecular Plant, 2020, 13(12): 1676-1693. |
| [43] | Zhou S L, Jiang W, Zhao Y, et al. Single-cell three-dimensional genome structures of rice gametes and unicellular zygotes. Nature Plants, 2019, 5(8): 795-800. |
| [44] | Falk M, Feodorova Y, Naumova N, et al. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature, 2019, 570(7761): 395-399. |
| [1] | Peng-yu TIAN, Yi-ru ZHANG, Xu-kai LI, Min-li SONG. Identification and expression analysis of the SiCCoAOMT gene family in Setaria italica [J]. Acta Prataculturae Sinica, 2026, 35(3): 195-209. |
| [2] | Zhi-fang ZUO, Yong-long LI, Yu-jia WEI, Sheng-hui ZHOU, Yan LI, Guo-feng YANG. Identification of DREB genes from Zoysia japonica and their transcript profiles in response to abiotic stress [J]. Acta Prataculturae Sinica, 2025, 34(5): 74-88. |
| [3] | Zhen DUAN, Fan WU, Qi YAN, Ji-yu ZHANG. Research progress on plant coumarin biosynthesis pathway and the genes encoding the key enzymes [J]. Acta Prataculturae Sinica, 2022, 31(1): 217-228. |
| [4] | Hui JI, Jiu-qiang GUAN, Hui WANG, Jian-xu ZHOU, Nong-ga A, Zong-wei HE, Zhen-xiang FAN, Long-kang QIU, Shi-xiao CAO, Tian-wu AN, Qin BAI, Jin-cheng ZHONG, Xiao-lin LUO. Genetic structure and diversity of Yading yak and Larima yak populations [J]. Acta Prataculturae Sinica, 2021, 30(5): 134-145. |
| [5] | CHEN Zhong-dian, ZHONG Zhen-mei. Efficiency of fertilizing biogas slurry on nitrate accumulation and N utilization of Pennisetum [J]. Acta Prataculturae Sinica, 2012, 21(3): 61-68. |
| [6] | FENG De-qing, HUANG Qin-lou, LI Chun-yan, HUANG Xiu-sheng, ZHONG Zhen-mei. A study on fatty acid components of twenty-eight forages [J]. Acta Prataculturae Sinica, 2011, 20(6): 214-218. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||