Acta Prataculturae Sinica ›› 2026, Vol. 35 ›› Issue (3): 195-209.DOI: 10.11686/cyxb2025132
Previous Articles Next Articles
Peng-yu TIAN1(
), Yi-ru ZHANG1, Xu-kai LI2, Min-li SONG1(
)
Received:2025-04-17
Revised:2025-06-16
Online:2026-03-20
Published:2026-01-19
Contact:
Min-li SONG
Peng-yu TIAN, Yi-ru ZHANG, Xu-kai LI, Min-li SONG. Identification and expression analysis of the SiCCoAOMT gene family in Setaria italica[J]. Acta Prataculturae Sinica, 2026, 35(3): 195-209.
| 基因名称Gene name | 上游引物Forward primer (5'-3') | 下游引物Reverse primer (3'-5') |
|---|---|---|
| SiActin7 | AGGGCTGTCTTCCCGAGTAT | ATGGCTCACACCATCACCAG |
| SiCCoAOMT1 | TGATCCATCCGAATCGCCAG | CACCGAGCACGGAGATTGAT |
| SiCCoAOMT2 | TCGGGTTCGACTTGGAATGG | TCCACAGCGTGTTGTCGTAG |
| SiCCoAOMT3 | GGCAGCCCTGCTTCACATTA | TGAATCGCAATGCGGCAATC |
| SiCCoAOMT4 | GCGAGTACTACGAGATCGGC | GACGTCCAGACGGAATGGAA |
| SiCCoAOMT5 | GGTGCGCCAAGCCTAAACTG | GGCGTTCAAGGGACGGTACT |
Table 1 qRT-PCR primer sequences
| 基因名称Gene name | 上游引物Forward primer (5'-3') | 下游引物Reverse primer (3'-5') |
|---|---|---|
| SiActin7 | AGGGCTGTCTTCCCGAGTAT | ATGGCTCACACCATCACCAG |
| SiCCoAOMT1 | TGATCCATCCGAATCGCCAG | CACCGAGCACGGAGATTGAT |
| SiCCoAOMT2 | TCGGGTTCGACTTGGAATGG | TCCACAGCGTGTTGTCGTAG |
| SiCCoAOMT3 | GGCAGCCCTGCTTCACATTA | TGAATCGCAATGCGGCAATC |
| SiCCoAOMT4 | GCGAGTACTACGAGATCGGC | GACGTCCAGACGGAATGGAA |
| SiCCoAOMT5 | GGTGCGCCAAGCCTAAACTG | GGCGTTCAAGGGACGGTACT |
基因名称 Gene name | 基因号 Gene ID | 蛋白长度 Protein length (aa) | 分子量 Molecular weight (Da) | 等电点 Isoelectric point | 不稳定指数 Instability index | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|
| SiCCoAOMT1 | Si2g25370 | 242 | 25798.61 | 5.04 | 33.80 | 叶绿体Chloroplast |
| SiCCoAOMT2 | Si4g06670 | 265 | 29517.68 | 5.24 | 26.54 | 细胞质Cytoplasmic |
| SiCCoAOMT3 | Si6g06400 | 295 | 32293.69 | 9.01 | 50.34 | 叶绿体Chloroplast, 线粒体Mitochondrion |
| SiCCoAOMT4 | Si6g19790 | 202 | 22591.96 | 5.26 | 26.21 | 细胞质Cytoplasmic |
| SiCCoAOMT5 | Si6g19800 | 544 | 58335.97 | 4.93 | 48.70 | 细胞质Cytoplasmic, 叶绿体Chloroplast |
| AtCCoAOMT1 | AT1G24735 | 291 | 33157.44 | 6.89 | 31.20 | 细胞质Cytoplasmic |
| AtCCoAOMT2 | AT1G67980 | 232 | 26114.06 | 5.16 | 20.45 | 细胞质Cytoplasmic |
| AtCCoAOMT3 | AT1G67990 | 233 | 26350.49 | 5.25 | 19.47 | 细胞质Cytoplasmic |
| AtCCoAOMT4 | AT3G61990 | 290 | 32168.92 | 5.23 | 41.90 | 叶绿体Chloroplast, 细胞核Nucleus |
| AtCCoAOMT5 | AT3G62000 | 352 | 39671.76 | 9.05 | 38.35 | 细胞核Nucleus |
| AtCCoAOMT6 | AT4G26220 | 232 | 25945.79 | 5.37 | 36.58 | 细胞质Cytoplasmic |
| AtCCoAOMT7 | AT4G34050 | 286 | 32473.04 | 5.81 | 39.11 | 细胞质Cytoplasmic |
| OsCCoAOMT1 | LOC_Os06g06980 | 260 | 28847.77 | 5.21 | 27.11 | 细胞质Cytoplasmic |
| OsCCoAOMT2 | LOC_Os08g05790 | 317 | 34307.55 | 9.08 | 36.74 | 叶绿体Chloroplast |
| OsCCoAOMT3 | LOC_Os08g38900 | 252 | 27771.74 | 5.11 | 29.60 | 细胞质Cytoplasmic |
| OsCCoAOMT4 | LOC_Os08g38910 | 292 | 31897.36 | 5.34 | 43.26 | 细胞质Cytoplasmic |
| OsCCoAOMT5 | LOC_Os08g38920 | 234 | 25883.49 | 5.57 | 29.56 | 细胞质Cytoplasmic, 叶绿体Chloroplast |
| OsCCoAOMT6 | LOC_Os09g30360 | 258 | 27132.08 | 5.09 | 34.32 | 细胞质Cytoplasmic, 叶绿体Chloroplast |
| SevirCCoAOMT1 | Sevir.2G259200 | 242 | 25798.61 | 5.04 | 33.80 | 叶绿体Chloroplast |
| SevirCCoAOMT2 | Sevir.4G059400 | 265 | 29544.71 | 5.24 | 25.82 | 细胞质Cytoplasmic |
| SevirCCoAOMT3 | Sevir.6G056900 | 297 | 32568.99 | 9.01 | 49.82 | 叶绿体Chloroplast, 线粒体Mitochondrion |
| SevirCCoAOMT4 | Sevir.6G204900 | 246 | 27324.29 | 5.09 | 31.64 | 细胞质Cytoplasmic |
| SevirCCoAOMT5 | Sevir.6G205000 | 245 | 26808.57 | 5.17 | 29.79 | 细胞质Cytoplasmic |
| SevirCCoAOMT6 | Sevir.6G205100 | 309 | 33724.22 | 6.27 | 47.54 | 叶绿体Chloroplast, 线粒体Mitochondrion |
Table 2 Physicochemical properties of CCoAOMT family proteins encoded by the genes of four plant species
基因名称 Gene name | 基因号 Gene ID | 蛋白长度 Protein length (aa) | 分子量 Molecular weight (Da) | 等电点 Isoelectric point | 不稳定指数 Instability index | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|---|---|
| SiCCoAOMT1 | Si2g25370 | 242 | 25798.61 | 5.04 | 33.80 | 叶绿体Chloroplast |
| SiCCoAOMT2 | Si4g06670 | 265 | 29517.68 | 5.24 | 26.54 | 细胞质Cytoplasmic |
| SiCCoAOMT3 | Si6g06400 | 295 | 32293.69 | 9.01 | 50.34 | 叶绿体Chloroplast, 线粒体Mitochondrion |
| SiCCoAOMT4 | Si6g19790 | 202 | 22591.96 | 5.26 | 26.21 | 细胞质Cytoplasmic |
| SiCCoAOMT5 | Si6g19800 | 544 | 58335.97 | 4.93 | 48.70 | 细胞质Cytoplasmic, 叶绿体Chloroplast |
| AtCCoAOMT1 | AT1G24735 | 291 | 33157.44 | 6.89 | 31.20 | 细胞质Cytoplasmic |
| AtCCoAOMT2 | AT1G67980 | 232 | 26114.06 | 5.16 | 20.45 | 细胞质Cytoplasmic |
| AtCCoAOMT3 | AT1G67990 | 233 | 26350.49 | 5.25 | 19.47 | 细胞质Cytoplasmic |
| AtCCoAOMT4 | AT3G61990 | 290 | 32168.92 | 5.23 | 41.90 | 叶绿体Chloroplast, 细胞核Nucleus |
| AtCCoAOMT5 | AT3G62000 | 352 | 39671.76 | 9.05 | 38.35 | 细胞核Nucleus |
| AtCCoAOMT6 | AT4G26220 | 232 | 25945.79 | 5.37 | 36.58 | 细胞质Cytoplasmic |
| AtCCoAOMT7 | AT4G34050 | 286 | 32473.04 | 5.81 | 39.11 | 细胞质Cytoplasmic |
| OsCCoAOMT1 | LOC_Os06g06980 | 260 | 28847.77 | 5.21 | 27.11 | 细胞质Cytoplasmic |
| OsCCoAOMT2 | LOC_Os08g05790 | 317 | 34307.55 | 9.08 | 36.74 | 叶绿体Chloroplast |
| OsCCoAOMT3 | LOC_Os08g38900 | 252 | 27771.74 | 5.11 | 29.60 | 细胞质Cytoplasmic |
| OsCCoAOMT4 | LOC_Os08g38910 | 292 | 31897.36 | 5.34 | 43.26 | 细胞质Cytoplasmic |
| OsCCoAOMT5 | LOC_Os08g38920 | 234 | 25883.49 | 5.57 | 29.56 | 细胞质Cytoplasmic, 叶绿体Chloroplast |
| OsCCoAOMT6 | LOC_Os09g30360 | 258 | 27132.08 | 5.09 | 34.32 | 细胞质Cytoplasmic, 叶绿体Chloroplast |
| SevirCCoAOMT1 | Sevir.2G259200 | 242 | 25798.61 | 5.04 | 33.80 | 叶绿体Chloroplast |
| SevirCCoAOMT2 | Sevir.4G059400 | 265 | 29544.71 | 5.24 | 25.82 | 细胞质Cytoplasmic |
| SevirCCoAOMT3 | Sevir.6G056900 | 297 | 32568.99 | 9.01 | 49.82 | 叶绿体Chloroplast, 线粒体Mitochondrion |
| SevirCCoAOMT4 | Sevir.6G204900 | 246 | 27324.29 | 5.09 | 31.64 | 细胞质Cytoplasmic |
| SevirCCoAOMT5 | Sevir.6G205000 | 245 | 26808.57 | 5.17 | 29.79 | 细胞质Cytoplasmic |
| SevirCCoAOMT6 | Sevir.6G205100 | 309 | 33724.22 | 6.27 | 47.54 | 叶绿体Chloroplast, 线粒体Mitochondrion |
同源基因 Homologous gene | 同义替 换率 (Ks ) | 非同义替换率 (Ka ) | 非同义替换/同义替换 (Ka/Ks ) |
|---|---|---|---|
| SiCCoAOMT1-LOC_Os08g38900 | 0.3068 | 0.3415 | 1.113103 |
| SiCCoAOMT1-LOC_Os09g30360 | 0.0515 | 0.1322 | 2.566990 |
| SiCCoAOMT1-Sevir.2G259200 | 1.3027 | 1.3657 | 1.048361 |
| SiCCoAOMT1-Sevir.6G204900 | 1.4866 | 1.6951 | 1.140253 |
| SiCCoAOMT2-LOC_Os06g06980 | 0.0585 | 0.1486 | 2.540171 |
| SiCCoAOMT2-Sevir.4G059400 | 1.3714 | 1.3570 | 0.989500 |
| SiCCoAOMT3-LOC_Os08g05790 | 0.1405 | 0.1639 | 1.166548 |
| SiCCoAOMT3-Sevir.6G056900 | 2.1684 | 1.5731 | 0.725466 |
| SiCCoAOMT4-LOC_Os08g38900 | 0.1196 | 0.2554 | 2.135452 |
| SiCCoAOMT4-LOC_Os09g30360 | 0.2908 | 0.3400 | 1.169188 |
| SiCCoAOMT4-Sevir.2G259200 | 1.1080 | 1.2859 | 1.160560 |
| SiCCoAOMT4-Sevir.6G204900 | 1.7213 | 1.6205 | 0.941440 |
Table 3 Ka/Ks values of syntenic gene pairs for CCoAOMT in millet, rice, and foxtail millet calculated
同源基因 Homologous gene | 同义替 换率 (Ks ) | 非同义替换率 (Ka ) | 非同义替换/同义替换 (Ka/Ks ) |
|---|---|---|---|
| SiCCoAOMT1-LOC_Os08g38900 | 0.3068 | 0.3415 | 1.113103 |
| SiCCoAOMT1-LOC_Os09g30360 | 0.0515 | 0.1322 | 2.566990 |
| SiCCoAOMT1-Sevir.2G259200 | 1.3027 | 1.3657 | 1.048361 |
| SiCCoAOMT1-Sevir.6G204900 | 1.4866 | 1.6951 | 1.140253 |
| SiCCoAOMT2-LOC_Os06g06980 | 0.0585 | 0.1486 | 2.540171 |
| SiCCoAOMT2-Sevir.4G059400 | 1.3714 | 1.3570 | 0.989500 |
| SiCCoAOMT3-LOC_Os08g05790 | 0.1405 | 0.1639 | 1.166548 |
| SiCCoAOMT3-Sevir.6G056900 | 2.1684 | 1.5731 | 0.725466 |
| SiCCoAOMT4-LOC_Os08g38900 | 0.1196 | 0.2554 | 2.135452 |
| SiCCoAOMT4-LOC_Os09g30360 | 0.2908 | 0.3400 | 1.169188 |
| SiCCoAOMT4-Sevir.2G259200 | 1.1080 | 1.2859 | 1.160560 |
| SiCCoAOMT4-Sevir.6G204900 | 1.7213 | 1.6205 | 0.941440 |
| [1] | Kahie M A, Wang Y, Fang P, et al. Evolution and expression analysis of the caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) gene family in jute (Corchorus L.). BMC Genomics, 2023, 24: 204. |
| [2] | Liu Q, Luo L, Zheng L Q. Lignins: biosynthesis and biological functions in plants.International Journal of Molecular Sciences, 2018, 19: 335. |
| [3] | Hongo S, Sato K, Yokoyama R, et al. Demethylesterification of the primary wall by PECTIN METHYLESTERASE35 provides mechanical support to the Arabidopsis stem. Plant Cell, 2012, 24: 2624-2634. |
| [4] | Zhao H Y, Sheng Q X, Lv S Y, et al. Characterization of three rice CCoAOMT genes. Chinese Science Bulletin, 2004, 49: 1602-1606. |
| [5] | Shan C R, Chen X H, Ding Y F, et al. Functional analysis of FmCCoAOMT gene in Fraxinus mandshurica during lignin synthesis and abiotic stress. Bulletin of Botanical Research, 2023, 43(5): 768-778. |
| 单超然, 陈晓慧, 丁云飞, 等. 水曲柳FmCCoAOMT基因在木质素合成及非生物胁迫中的功能分析. 植物研究, 2023, 43(5): 768-778. | |
| [6] | Kühnl T, Koch U, Heller W, et al. Elicitor induced S-adenosyl-l-methionine: caffeoyl-CoA 3-O-methyltransferase from carrot cell suspension cultures. Plant Science, 1989, 60: 21-25. |
| [7] | Schmitt D, Pakusch A E, Matern U. Molecular cloning, induction and taxonomic distribution of caffeoyl-CoA 3-O-methyltransferase, an enzyme involved in disease resistance. Journal of Biological Chemistry, 1991, 266: 17416-17423. |
| [8] | Ye Z H, Kneusel R E, Matern U, et al. Multiple cDNAs for caffeoyl-CoA O-methyltransferase in plant tissues. Plant Journal, 1994, 6: 211-219. |
| [9] | Ibrahim R K, Bruneau A, Bantignies B. Plant O-methyltransferases: molecular analysis, common signature and classification. Plant Molecular Biology, 1998, 36: 1-10. |
| [10] | Zhang G Y, Zhang Y J, Xu J T, et al. The CCoAOMT1 gene from jute (Corchorus capsularis L.) is involved in lignin biosynthesis in Arabidopsis thaliana. Gene,2014, 546: 398-402. |
| [11] | Zhao H Y, Shen Q X, Lv S Y, et al. Expression analysis of caffeoyl-CoA-O-methyltransferase gene (CCoAOMT) in rice. Chinese Science Bulletin, 2004, 49(14): 1390-1394. |
| 赵华燕, 沈庆喜, 吕世友, 等. 水稻咖啡酰辅酶A-O-甲基转移酶基因(CCoAOMT)表达特性分析. 科学通报, 2004, 49(14): 1390-1394. | |
| [12] | Brutnell T P, Wang L, Swartwood K, et al. Setaria viridis: a model for C4 photosynthesis. Plant Cell,2010, 22: 2537-2544. |
| [13] | Wang Y G, Lyu X Y, Ji M C, et al. Stress tolerance improvement by BvM14-CCoAOMT gene in sugar beet M14 strain. Chinese Agricultural Science Bulletin, 2018, 34(34): 30-35. |
| 王宇光, 吕笑言, 季美超, 等. 甜菜M14品系咖啡酰辅酶A-O-甲基转移酶提高植物抗逆性功能分析. 中国农学通报, 2018, 34(34): 30-35. | |
| [14] | Riccardi F, Gazeau P, de Vienne D, et al. Protein changes in response to progressive water deficit in maize: quantitative variation and polypeptide identification. Plant and Cell Physiology,1998, 117: 1253-1263. |
| [15] | Salekdeh G H, Siopongco J, Wade L J, et al. A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Research, 2002, 76: 199-219. |
| [16] | Wang C, Chen J F, Zhi H, et al. Population genetics of foxtail millet and its wild ancestor. BMC Genetics, 2010, 11: 1-13. |
| [17] | Yan W M. The origin of agriculture and Chinese civilization. Chinese Rural Discovery, 2016, 8(5): 38-45. |
| 严文明. 农业起源与中华文明. 中国乡村发现, 2016, 8(5): 38-45. | |
| [18] | Diao X M. Breeding innovation creates new development of millet seed industry. China Seed Industry, 2022, 4(4): 4-7. |
| 刁现民. 育种创新造就谷子种业新发展. 中国种业, 2022, 4(4): 4-7. | |
| [19] | Liu Q. We should attach great importance to the strategic value of “planting belt moving north”. Farmers Daily, 2021-11-27(004). |
| 刘强.应高度重视“种植带北移”的战略价值. 农民日报, 2021-11-27(004). | |
| [20] | Yang Z R, Zhang H S, Li X K, et al. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nature Plants, 2020, 6: 1167-1178. |
| [21] | Song L N, Zhang Y M, Hu C S, et al. Comprehensive analysis of emissions and global warming effects of greenhouse gases in winter-wheat fields in the high-yield agro-region of north China Plain. Chinese Journal of Ecological Agriculture, 2013, 21(3): 297-307. |
| 宋利娜, 张玉铭, 胡春胜, 等. 华北平原高产农区冬小麦农田土壤温室气体排放及其综合温室效应.中国生态农业学报, 2013, 21(3): 297-307. | |
| [22] | Ferreira S S, Simões M S, Carvalho G G, et al. The lignin toolbox of the model grass Setaria viridis. Plant Molecular Biology,2019, 101: 235-255. |
| [23] | Chen C J, Wu Y, Li J W, et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 2023, 16: 1733-1742. |
| [24] | Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 2021, 38: 3022-3027. |
| [25] | Bailey T L, Johnson J, Grant C E, et al. The MEME suite. Nucleic Acids Research, 2015, 43: W39-W49. |
| [26] | Yu C S, Lin C J, Hwang J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions.Protein Science, 2004, 13: 1402-1406. |
| [27] | Sun R, Yang Y Y, Li Y J, et al. Genome-wide identification and analysis of PLATZ transcription factor gene family in foxtail millet. Chinese Bulletin of Botany, 2023, 58(4): 548-559. |
| 孙蓉, 杨宇琭, 李亚军, 等. 谷子PLATZ转录因子基因家族的鉴定和分析. 植物学报, 2023, 58(4): 548-559. | |
| [28] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔ C T method. Methods, 2001, 25: 402-408. |
| [29] | Li X K, Gao J, Song J, et al. Multi-omics analyses of 398 foxtail millet accessions reveal genomic regions associated with domestication, metabolite traits, and anti-inflammatory effects. Molecular Plant, 2022, 15: 1367-1383. |
| [30] | Li X K, Shi Z, Gao J, et al. CandiHap: a haplotype analysis toolkit for natural variation study. Molecular Breeding, 2023, 43: 21. |
| [31] | Lee Y J, Kim B G, Chong Y, et al. Cation dependent O-methyltransferases from rice. Planta, 2008, 227: 641-647. |
| [32] | Kim J S, Mizoi J, Yoshida T, et al. An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant and Cell Physiology, 2011, 52: 2136-2146. |
| [33] | Hu J, Liu T, Huo H, et al. Genome-wide characterization, evolutionary analysis, and expression pattern analysis of the trihelix transcription factor family and gene expression analysis under MeJA treatment in Panax ginseng. BMC Plant Biology, 2023, 23: 376. |
| [34] | Jalmi S K, Bhagat P K, Verma D, et al. Traversing the links between heavy metal stress and plant signaling. Frontiers in Plant Science, 2018, 9: 12. |
| [35] | Yao T, Zhang J, Xie M, et al. Transcriptional regulation of drought response in Arabidopsis and woody plants.Frontiers in Plant Science, 2021, 11: 572137. |
| [36] | Guo B, Qin J F, Li N, et al. Genome-wide identification and expression analysis of SHMT gene family in foxtail millet (Setaria italica L.). Acta Agronomica Sinica, 2025, 51(3): 586-597. |
| 郭冰, 秦家范, 李娜, 等. 谷子SHMT基因家族全基因组鉴定与表达分析. 作物学报, 2025, 51(3): 586-597. | |
| [37] | Guo Z W, Si X Y, Jiao L P, et al. Cloning and bioinformatics of CCoAOMT relating to resistance of soybean to cyst nematodes. Fujian Journal of Agricultural Sciences, 2023, 38(5): 616-623. |
| 郭子雯, 司修洋, 焦莉苹, 等. 大豆咖啡酰辅酶A-O-甲基转移酶(CCoAOMT)基因克隆及结构分析. 福建农业学报, 2023, 38(5): 616-623. | |
| [38] | Lu C, Zhang X Y, Lu M, et al. Identification and bioinformatics analysis of RrCCoAOMT gene family in Rosa roxburghii. Molecular Plant Breeding, 2023, 21(3): 764-771. |
| 卢晨, 张小英, 鲁敏, 等. 刺梨RrCCoAOMT基因家族的鉴定与生物信息学分析. 分子植物育种, 2023, 21(3): 764-771. | |
| [39] | Ma Q, Yan Q, Zhang Z S, et al. Identification, evolution and expression analysis of the CCoAOMT family genes in Medicago sativa. Acta Prataculturae Sinica, 2021, 30(11): 144-156. |
| 马倩, 闫启, 张正社, 等. 紫花苜蓿CCoAOMT基因家族的鉴定、进化及表达分析. 草业学报, 2021, 30(11): 144-156. | |
| [40] | Peng S N, Li Y K, Luo D D, et al. Identification and expression analysis of flavonoid O-methyltransferase gene family in Artemisia argyi. Acta Pharmaceutical Sinica, 2023, 58(4): 1069-1078. |
| 彭赛男, 李宇琨, 罗丹丹, 等. 艾叶类黄酮O-甲基转移酶基因家族的鉴定及表达分析. 药学学报, 2023, 58(4): 1069-1078. | |
| [41] | Suo Q Q, Wu N, Yang H, et al. Prokaryotic expression, antibody preparation and application of rice caffeoyl-CoA-O-methyltransferase gene. Biotechnology Bulletin, 2022, 38(8): 135-141. |
| 索青青, 吴楠, 杨慧, 等. 水稻咖啡酰辅酶A-O-甲基转移酶基因的原核表达、抗体制备和应用. 生物技术通报, 2022, 38(8): 135-141. | |
| [42] | Rakoczy M, Femiak I, Alejska M, et al. Sorghum CCoAOMT and CCoAOMT-like gene evolution, structure, expression and the role of conserved amino acids in protein activity. Molecular Genetics and Genomics, 2018, 293: 1077-1089. |
| [43] | Yang Q, He Y, Kabahuma M, et al. A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics, 2017, 49: 1364-1372. |
| [44] | Luo T R, Ma J Z, Du M Y, et al. Identification and expression analysis of LACS gene family members in Medicago sativa. Acta Prataculturae Sinica, 2025, 34(4): 124-136. |
| 罗天蓉, 马健芝, 杜明阳, 等. 紫花苜蓿LACS基因家族成员鉴定及表达分析. 草业学报, 2025, 34(4): 124-136. |
| [1] | Jia-le LIU, Juan QI, Wen-liang LI, Xin LU, Qi YUAN, Ming-jie LI, Ao-long ZHANG, Wang-yi DU. Identification and expression analysis of EsJRL genes in Elymus sibiricus [J]. Acta Prataculturae Sinica, 2026, 35(1): 206-222. |
| [2] | Wei-peng ZOU, Yi LIU, Jia-xing ZHAI, Si-yi ZHOU, Zhi-yi GONG, Hui-fang CEN, Hui-sen ZHU, Tao XU. Cloning of MsNAC053 from alfalfa and analysis of its transcript profile in response to abiotic stresses [J]. Acta Prataculturae Sinica, 2025, 34(9): 121-133. |
| [3] | Ran XIAN, Yu DENG, Qiu-yue FU, Jing-xia JIANG, Jia-li TAO, Tao XU, Hui-sen ZHU, Hui-fang CEN. Cloning of alfalfa MsMYB86 and analysis of its transcriptional response to abiotic stress [J]. Acta Prataculturae Sinica, 2025, 34(9): 162-172. |
| [4] | Zhi-fang ZUO, Yong-long LI, Yu-jia WEI, Sheng-hui ZHOU, Yan LI, Guo-feng YANG. Identification of DREB genes from Zoysia japonica and their transcript profiles in response to abiotic stress [J]. Acta Prataculturae Sinica, 2025, 34(5): 74-88. |
| [5] | Xin-yue ZHOU, Li-ping WANG, Qing-xue JIANG, Xiao-ran MA, Deng-xia YI, Xue-min WANG. Isolation of the low-temperature induced proteinMsLTI65 from alfalfa and its response to different stresses [J]. Acta Prataculturae Sinica, 2025, 34(5): 89-104. |
| [6] | Tian-rong LUO, Jian-zhi MA, Ming-yang DU, Jie-cuo DUO, Hui-yan XIONG, Rui-jun DUAN. Identification and expression analysis of LACS gene family members in Medicago sativa [J]. Acta Prataculturae Sinica, 2025, 34(4): 124-136. |
| [7] | Xiao-tong WANG, Xiao-hong LI, Xu-xia MA, Wen-qi CAI, Xue-li FENG, Shu-xia LI. Identification and analysis of members of the FBA gene family in alfalfa [J]. Acta Prataculturae Sinica, 2024, 33(9): 81-93. |
| [8] | Guo-qiang WU, Zu-long YU, Ming WEI. The mechanism of PGPR regulating plant response to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(6): 203-218. |
| [9] | Hao LIU, Xian-yang LI, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification of the alfalfa SAUR gene family and its expression pattern under abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(4): 135-153. |
| [10] | Xian-yang LI, Hao LIU, Fei HE, Xue WANG, Ming-na LI, Rui-cai LONG, Jun-mei KANG, Qing-chuan YANG, Lin CHEN. Identification and expression pattern of the WRKY transcription factor family in Medicago sativa [J]. Acta Prataculturae Sinica, 2024, 33(4): 154-170. |
| [11] | Ze-bin LI, Yong-zheng QIU, Yan-jie LIU, Jin-qiu YU, Bai-ji WANG, Qian-ning LIU, Yue WANG, Guo-wen CUI. Identification of the BZR gene family in alfalfa and analysis of its transcriptional responses to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(11): 106-122. |
| [12] | Xiao-xiao LI, Pan ZHANG, Yuan LU, Ting LI, Na ZHAO, Jia-wen WU. Abiotic stress priming affects the responses of maize (Zea mays) plants to cadmium stress [J]. Acta Prataculturae Sinica, 2024, 33(11): 135-148. |
| [13] | Xin-miao ZHANG, Guo-qiang WU, Ming WEI. The role of MAPK in plant response to abiotic stress [J]. Acta Prataculturae Sinica, 2024, 33(1): 182-197. |
| [14] | Xian-fei SHI, Yu GAO, Xu-sheng HUANG, Ya-li ZHOU, Gui-ping CAI, Xin-ru LI, Run-zhi LI, Jin-ai XUE. Functional characterization of Cyperus esculentus CeWRKY transcription factors in response to abiotic stress [J]. Acta Prataculturae Sinica, 2023, 32(8): 186-201. |
| [15] | Jie ZHANG, Kai CHENG, Ying-chun WANG. Analysis of the calcium-dependent protein kinase RtCDPK16 response to abiotic stress in Reaumuria trigyna [J]. Acta Prataculturae Sinica, 2023, 32(2): 97-109. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||