Acta Prataculturae Sinica ›› 2010, Vol. 19 ›› Issue (6): 248-262.
Previous Articles Next Articles
MA Jiang-tao1,2, WANG Zong-li1, HUANG Dong-guang3, WU Yan-min2
Received:
2010-04-02
Online:
2010-06-25
Published:
2010-12-20
CLC Number:
MA Jiang-tao, WANG Zong-li, HUANG Dong-guang, WU Yan-min. Application of genetic engineering in forage plants breeding[J]. Acta Prataculturae Sinica, 2010, 19(6): 248-262.
[1] 梁哲, 姜三杰, 吴燕民, 等. 三叶草基因工程研究进展[J]. 草业学报, 2009, 18(2): 205-211. [2] 张永彦, 徐子勤. 多年生黑麦草成熟胚再生体系的建立及基因枪转化[J]. China Biotechnology, 2005, 25(3): 53-59. [3] Ke H Q, Lee C W. Plant regeneration in Kentucky bluegrass (Poa pratensis L.) via coleoptile tissue cultures[J]. Plant Cell Reports, 1996, 15: 882-887. [4] Nielsen K A, Larsen E, Knudsen E. Regeneration of protoplast-derived green plants of Kentucky blue grass (Poa pratensis L.)[J]. Plant Cell Reports, 1993, 12: 537-540. [5] Valk P, Zaal M A C M, Creemers-Molenaar J. Somatic embryogenesis and plant regeneration in inflorescence and seed derived callus cultures of Poa pratensis L. (Kentucky bluegrass)[J]. Plant Cell Reports, 1989, 7: 644-647. [6] Abogadallah G M, Quick W P. Fast versatile regeneration of Trifolium alexandrinum L.[J]. Plant Cell Tissue and Organ Culture, 2010, 100: 39-48. [7] Li J J, Wu Y M, Wang T, et al. In vitro direct organogenesis and regeneration of Medicago sativa[J]. Biologia Plantarum, 2009, 53(2): 325-328. [8] Nagarajan P, McKenzie J S, Walton P D. Embryogenesis and plant regeneration of Medicago spp. in tissue culture[J]. Plant Cell Reports, 1986, 5: 77-80. [9] Burris J N, Mann D G J, Joyce B L, et al. An improved tissue culture system for embryogenic callus production and plant regeneration in switchgrass (Panicum virgatum L.)[J]. Bioenerg Research, 2009, 2: 267-274. [10] Li X L, Yu X M, Wang N N, et al. Genetic and epigenetic instabilities induced by tissue culture in wild barley (Hordeum brevisubulatum (Trin.) Link)[J]. Plant Cell Tissue and Organ Culture, 2007, 90: 153-168. [11] Liu G S, Liu J S, Qi D M, et al. Factors affecting plant regeneration from tissue cultures of Chinese leymus (Leymus chinensis)[J]. Plant Cell Tissue and Organ Culture, 2004, 76: 175-178. [12] Akashi R, Kawano T, Hashiguchi M, et al. Super roots in Lotus corniculatus: A unique tissue culture and regeneration system in a legume species[J]. Plant and Soil, 2003, 255: 27-33. [13] Molinari L, Busti A, Calderini O, et al. Plant regeneration from callus of apomictic and sexual lines of Paspalum simplex and RFLP analysis of regenerated plants[J]. Plant Cell Reports, 2003, 21: 1040-1046. [14] Wang Z, Lehmann D, Bell J, et al. Development of an efficient plant regeneration system for Russian wildrye (Psathyrostachys juncea)[J]. Plant Cell Reports, 2002, 20: 797-801. [15] Vikrant, Rashid A. Somatic embryogenesis from immature and mature embryos of a minormillet Paspalum scrobiculatum L.[J]. Plant Cell Tissue and Organ Culture, 2002, 69: 71-77. [16] Nayak P, Sen S K. Plant regeneration through somatic embryogenesis from suspension culture-derived protoplasts of Paspalum scrobiculatum L.[J]. Plant Cell Reports, 1991, 10: 362-365. [17] Zwierzykowski Z, Zwierzykowska E, Slusarkiewicz-Jarzina A, et al. Regeneration of anther-derived plants from pentaploid hybrids of Festuca arundinacea×Lolium multifiorum[J]. Euphytica, 1999, 105: 191-195. [18] McLean N L, Nowak J. Inheritance of somatic embryogenesis in red clover (Trifolium pratense L.)[J]. Theoretical and Applied Genetics, 1998, 97: 557-562. [19] MacLean N L, Nowak J. Plant regeneration from hypocotyl and petiole callus of Trifolium pratense L.[J]. Plant Cell Reports, 1989, 8: 395-398. [20] Beattie L D, Garrett R G. Adventitious shoot production from immature embryos of white clover[J]. Plant Cell Tissue and Organ Culture, 1995, 42: 67-72. [21] Marousky F J, West S H. Somatic embryogenesis and plant regeneration from cultured mature caryopses of bahiagrass (Paspalum notatum Flugge)[J]. Plant Cell Tissue and Organ Culture, 1990, 20: 125-129. [22] Heszky L E, Binh D Q, Kiss E, et al. Increase of green plant regeneration efficiency by callus selection in Puccinellia limosa (Schur.) Holmbg.[J]. Plant Cell Reports, 1989, 8: 174-177. [23] Choo T M. Plant regeneration in zigzag clover (Trifofium medium L.)[J]. Plant Cell Reports, 1988, 7: 246-248. [24] Horn M E, Conger B V, Harms C T. Plant regeneration from protoplasts of embryogenic suspension cultures of orchardgrass (Dactylis glomerata L.)[J]. Plant Celt Reports, 1988, 7: 371-374. [25] Dale P J, Thomas E, Brettell R I S, et al. Embryogenesis from cultured immature inflorescences and nodes of Lolium multiflorum[J]. Plant Cell Tissue and Organ Culture, 1981, 1: 47-55. [26] Bajaj Y P S, Sidhu B S, Dubey V K. Regeneration of genetically diverse plants from tissue cultures of forage grass-Panicum sps[J]. Euphytica, 1981, 30: 135-140. [27] Dalton S J, Thomas I D. A statistical comparison of various factors on embryogenic proliferation, morphogenesis and regeneration in Lolium temulentum cell suspension colonies[J]. Plant Cell Tissue and Organ Culture, 1992, 30: 15-29. [28] Valk P, Ruis F, Tettelaar-Schrier A M, et al. Optimizing plant regeneration from seed-derived callus cultures of Kentucky bluegrass: The effect of benzyladenine[J]. Plant Cell Tissue and Organ Culture, 1995, 40: 101-103. [29] 黄骏麒, 钱思颖, 刘桂玲, 等. 外源海岛棉DNA导致陆地棉性状的变异[J]. 遗传学报, 1981, 8(1): 56-62. [30] 张孔恬, 刘根齐, 孔繁瑞. 高粱恢复不育系基因的非配子融合转移及其后代表现[J]. 遗传学报, 1982, 9(3): 209-213. [31] Crossway A, Oakes J V, Irvine J M, et al. Integration of foreign DNA following microinjection of tobacco mesophyll protoplasts[J]. Molecular and General Genetics, 1986, 202: 179-185. [32] 朱培冲, 王鸣歧, 陆妙康 等. 动态导入法获得的杂种青菜——甘蓝及其子代[J]. 上海农业学报, 1986, 2(3): 17-26. [33] 刘根齐, 张孔恬. 高粱不育系与保持系授粉过程中外源恢复基因的引入及其后代表现[J]. 作物学报, 1987, 13(2): 123-127. [34] Weber G, Monajembashi S, Greulich K O, et al. Microperforation of plant tissue with a UV Laser microbeam and injection of DNA into cells[J]. Naturwissenschaften, 1988, 75: 35-36. [35] 周光宇, 翁坚, 龚蓁蓁, 等. 农业分子育种授粉后外源DNA导入植物的技术[J]. 中国农业科技, 1988, 21(3): 1-6. [36] Topfer R, Gronenborn B, Schell J, et al. Uptake and transient expression of chimeric genes in seed-derived embryos[J]. The Plant Cell, 1989, 1(1): 133-139. [37] Kaeppler H F, Gu W N, Somers D A, et al. Silicon carbide fiber-mediated DNA delivery into plant cells[J]. Plant Cell Reports, 1990, 9: 415-418. [38] 张力建, 陈乐玫, 袁静, 等. 超声波法直接导入外源基因: 高效烟草转化系统的建立[J]. 中国农业科技, 1991, 24(2): 83-89. [39] Wang Z Y, Ge Y X. Recent advances in genetic transformation of forage and turf grasses[J]. In Vitro Cellular & Developmental Biology-Plant, 2006, 42: 1-18. [40] Klein T M, Wolf E D, Wu R, et al. High-velocity microprojectiles for delivering nucleic acids into living cells[J]. Nature, 1987, 327: 70-73. [41] Guo Y D, Hisano H, Shimamoto Y, et al. Transformation of androgenic-derived Festulolium plants (Lolium perenne L.×Festuca pratensis Huds.)by Agrobacterium tumefaciens[J]. Plant Cell Tiss and Organ Culture, 2009, 96: 219-227. [42] Gao C X, Liu J X, Nielsen K K. Agrobacterium-mediated transformation of meadow fescue (Festuca pratensis Huds.)[J]. Plant Cell Reports, 2009, 28: 1431-1437. [43] Gao C X, Long D F, Lenk I, et al. Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment[J]. Plant Cell Reports, 2008, 27: 1601-1609. [44] Wang Z Y, Scott M, Bell J, et al. Field performance of transgenic tall fescue (Festuca arundinacea Schreb.) plants and their progenies[J]. Theoretical and Applied Genetics, 2003, 107: 406-412. [45] Bettany A J E, Dalton S J, Timms E, et al. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.)[J]. Plant Cell Reports, 2003, 21: 437-444. [46] Cho M J, Ha C D, Lemaux P G. Production of transgenic tall fescue and red fescue plants by particle bombardment of mature seed-derived highly regenerative tissues[J]. Plant Cell Reports, 2000, 19: 1084-1089. [47] Weeks J T, Ye J S, Rommens C M. Development of an in planta method for transformation of alfalfa (Medicago sativa)[J]. Transgenic Research, 2008, 17: 587-597. [48] Samac D A. Strain specificity in transformation of alfalfa by Agrobacterium tumefaciens[J]. Plant Cell Tissue and Organ Culture, 1995, 43: 271-277. [49] Nakamura T, Ishikawa M. Transformation of suspension cultures of bromegrass (Bromus inermis) by Agrobacterium tumefaciens[J]. Plant Cell Tissue and Organ Culture, 2006, 84: 293-299. [50] Gao C X, Jiang L, Folling M, et al. Generation of large numbers of transgenic Kentucky bluegrass (Poa pratensis L.) plants following biolistic gene transfer[J]. Plant Cell Reports, 2006, 25: 19-25. [51] Quecini V M, Alves A C, Oliveira C A, et al. Microparticle bombardment of Stylosanthes guianensis: transformation parameters and expression of a methionine-rich 2S albumin gene[J]. Plant Cell Tissue Organ Culture, 2006, 87: 167-179. [52] Ge Y X, Norton T, Wang Z Y. Transgenic zoysiagrass (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation[J]. Plant Cell Reports, 2006, 25: 792-798. [53] Toyama K, Bae C H, Kang J G, et al. Production of herbicide-tolerant zoysia grass by Agrobacterium-mediated transformation[J]. Molecular Cells, 2003, 16(1): 19-27. [54] Shu Q Y, Liu G S, Xu S X, et al. Genetic transformation of Leymus chinensis with the PAT gene through microprojectile bombardment to improve resistance to the herbicide Basta[J]. Plant Cell Reports, 2005, 24: 36-44. [55] Wang Z Y, Bell J, Lehmann D. Transgenic Russian wildrye (Psathyrostachys juncea) plants obtained by biolistic transformation of embryogenic suspension cells[J]. Plant Cell Reports, 2004, 22: 903-909. [56] Takahashi W, Fujimori M, Miura Y, et al. Increased resistance to crown rust disease in transgenic Italian ryegrass (Lolium multiflorum Lam.) expressing the rice chitinase gene[J]. Plant Cell Reports, 2005, 23: 811-818. [57] Petrovska N, Wu X L, Donato R, et al. Transgenic ryegrasses (Lolium spp.) with down-regulation of main pollen allergens[J]. Molecular Breeding, 2004, 14: 489-501. [58] Li Q, Robson P R H, Bettany A J E, et al. Modification of senescence in ryegrass transformed with IPT under the control of a monocot senescence-enhanced promoter[J]. Plant Cell Reports, 2004, 22: 816-821. [59] Ye X, Wang Z Y, Wu X, et al. Transgenic Italian ryegrass (Lolium multiflorum) plants from microprojectile bombardment of embryogenic suspension cells[J]. Plant Cell Reports, 1997, 16: 379-384. [60] Cho H J, Brotherton J E, Widholm J M. Use of the tobacco feedback-insensitive anthranilate synthase gene (ASA2) as a selectable marker for legume hairy root transformation[J]. Plant Cell Reports, 2004, 23: 104-113. [61] Nikolic′ R, Mitic′ N, Ninkovic′ S, et al. Efficient genetic transformation of Lotus corniculatus L. and growth of transformed plants in field[J]. Biologia Plantarum, 2003, 47(1): 137-140. [62] Smith R L, Grando M F, Li Y Y, et al. Transformation of bahiagrass (Paspalum notatum Flugge)[J]. Plant Cell Reports, 2002, 20: 1017-1021. [63] Richards H A, Rudas V A, Sun H, et al. Construction of a GFP-BAR plasmid and its use for switchgrass transformation[J]. Plant Cell Reports, 2001, 20: 48-54. [64] Bajaj S, Ran Y, Phillips J, et al. A high throughput Agrobacterium tumefaciens-mediated transformation method for functional genomics of perennial ryegrass (Lolium perenne L.)[J]. Plant Cell Reports, 2006, 25: 651-659. [65] Wu Y Y, Chen Q J, Chen M, et al. Salt-tolerant transgenic perennial ryegrass (Lolium perenne L.) obtained by Agrobacterium tumefaciens-mediated transformation of the vacuolar Na+/H+antiporter gene[J]. Plant Science, 2005, 169: 65-73. [66] Chen X, Yang W Q, Sivamani E, et al. Selective elimination of perennial ryegrass by activation of a pro-herbicide through engineering E. coli arg E gene[J]. Molecular Breeding, 2005, 15: 339-347. [67] Altpeter F, Xu J P, Ahmed S. Generation of large numbers of independently transformed fertile perennial ryegrass (Lolium perenne L.) plants of forage-and turf-type cultivars[J]. Molecular Breeding, 2000, 6: 519-528. [68] Maas H M, Jong E R, Rueb S, et al. Stable transformation and long-term expression of the gusA reporter gene in callus lines of perennial ryegrass (Lolium perenne L.)[J]. Plant Molecular Biology, 1994, 24: 401-405. [69] 何勇, 田志宏. 草坪植物遗传转化的研究进展[J]. 生物技术通讯, 2003, 14: 539-542. [70] Chen L F O, Hwang J Y, Charng Y Y, et al. Transformation of broccoli (Brassica oleracea var. italica) with isopentenyltransferase gene via Agrobacterium tumefaciens for post-harvest yellowing retardation[J]. Molecular Breeding, 2001, 7: 243-257. [71] Gan S, Amasino R M. Inhibition of leaf senescence by autoregulated production of cytokinin[J]. Science, 1995, 270:1986-1988. [72] Calderini O, Bovone T, Scotti C, et al. Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12[J]. Plant Cell Reports, 2007, 26: 611-615. [73] Wang Z Y, Ye X D, Nagel J, et al. Expression of a sulphur-rich sunflower albumin gene in transgenic tall fescue (Festuca arundinacea Schreb.) plants[J]. Plant Cell Reports, 2001, 20: 213-219. [74] Avraham T, Badani H, Galili S, et al. Enhanced levels of methionine and cysteine in transgenic alfalfa (Medicago sativa L.) plants over-expressing the Arabidopsis cystathionine γ-synthase gene[J]. Plant Biotechnology Journal, 2005, 3: 71-79. [75] Bagga S, Potenza C, Ross J, et al. A transgene for high methionine protein is posttranscriptionally regulated by methionine[J]. In Vitro Cellular and Developmental Biology-Plant, 2005, 41: 731-741. [76] 张改娜, 贾敬芬. 豌豆清蛋白 1(PA1)基因的克隆及对苜蓿的转化[J]. 草业学报, 2009, 18(3): 117-125. [77] Wandelt C I, Khan M R I, Craig S, et al. Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants[J]. The Plant Journal, 1992, 2(2): 181-192. [78] Morris P, Robbins M P. Manipulating condensed tannins in forage legumes[A]. In: McKersie B D, Brown D C W. Biotechnology and the Improvement of Forage Legumes[M]. Wallingford, CT: CAB International, 1997: 147-173. [79] Carron T R, Robbins M P, Morris P. Genetic modification of condensed tannin biosynthesis in Lotus corniculatus 1. Heterologous antisense dihydroflavonol reductase down-regulates tannin accumulation in “hairy root” cultures[J]. Theoretical and Applied Genetics, 1994, 87: 1006-1015. [80] Robbins M P, Bavage A D, Strudwicke C, et al. Genetic manipulation of condensed tannins in higher plants[J]. Plant Physiology, 1998, 116: 1133-1144. [81] Jongedijk E, Tigelaar H, Roekel J S C, et al. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants[J]. Euphytica, 1995, 85: 173-180. [82] Masoud S A, Zhu Q, Lamb C, et al. Constitutive expression of an inducible β-1,3-glucanase in alfalfa reduces disease severity caused by the oomycete pathogen Phytophthora megasperma f. sp medicaginis, but does not reduce disease severity of chitin-containing fungi[J]. Transgenic Research, 1996, 5: 313-323. [83] Dong S J, Shew H D, Tredway L P, et al. Expression of the bacteriophage T4 lysozyme gene in tall fescue confers resistance to gray leaf spot and brown patch diseases[J]. Transgenic Research, 2008, 17: 47-57. [84] Kalla R, Ludlow E, Lepage C, et al. Development of clovers with immunity to white clover mosaic virus[A]. Abstracts 2nd International Symposium Molecular Breeding of Forage Crops[C]. Victoria: Lorne and Hamilton, 2000: 106. [85] 赵桂琴, 慕平. 苜蓿花叶病毒外壳蛋白基因对红三叶的遗传转化及转基因植株的抗病性分析[J]. 西北植物学报, 2004, 24(10): 1850-1855. [86] 赵桂琴, 慕平, Paul Chu. 苜蓿花叶病毒外壳蛋白基因在白三叶中的表达及转基因植株的抗病性分析[J]. 农业生物技术学报, 2005, 13(2): 230-234. [87] Strizhov N, Keller M, Mathur J, et al. A synthetic CryIC gene,encoding a bacillus thuringiensis δ-endotoxin, confers spodoptera resistance in alfalfa and tobacco[J]. Proceedings of the National Academy of Science of USA, 1996, 93: 15012-15017. [88] Voisey C R, Dudas B, Biggs R, et al. Transgenic pest and disease resistant white clover plants[A]. Spangenberg G. Molecular Breeding of Forage Crops[C]. Kluwer Academic Publishers, 2000, 11: 19-24. [89] Thomas J C, Wasmann C C, Echt C, et al. Introduction and expression of an insect proteinase inhibitor in alfalfa (Medicago sativa L.)[J]. Plant Cell Reports, 1994, 14: 31-36. [90] Li D X, Sun Q, Huang M, et al. Agrobacterium-mediated genetic transformation of Elymus breviaristatus with Pseudomonas pseudoalcaligenes insecticidal protein gene[J]. Plant Cell Tissue and Organ Culture, 2007, 89: 159-168. [91] Kuthleen D H, Willy J B, Greef D. Engineering of herbicide-resistant alfalfa and evaluation under field conditions[J].Crop Science, 1990, 30: 866-871. [92] Tranel P J, Wassom J J, Jeschke M R, et al. Transmission of herbicide resistance from a monoecious to a dioecious weedy Amaranthus species[J]. Theoretical and Applied Genetics, 2002, 105: 674-679. [93] Wang L J, Li X F, Chen S Y, et al. Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA3[J]. Biotechnology Letters, 2009, 31: 313-319. [94] Mckersie B D, Murnaghan J, Jones K S, et al. Iron-Superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance[J]. Plant Physiology, 2000, 122: 1427-1437. [95] Zhao J S, Ren W, Zhi D Y, et al. Arabidopsis DREB1A/CBF3 bestowed transgenic tall fescue increased tolerance to drought stress[J]. Plant Cell Reports, 2007, 26: 1521-1528. [96] Jin T C, Chang Q, Li W F, et al. Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa[J]. Plant Cell Tissue and Organ Culture, 2010, 100: 219-227. [97] Wigdorovitz A, Carrillo C, Dus Santos M J, et al. Induction of a protective antibody response to foot and mouth disease virus in mice following oral or parenteral immunization with alfalfa transgenic plants expressing the viral structural protein VP1[J]. Virology, 1999, 255: 347-353. [98] 王伟青, 周珍辉, 曹授俊, 等. 植物基因工程疫苗在畜牧业上的应用与发展前景[J]. 畜牧与兽医, 2009, 41(5): 92-94. [99] Dus Santos M J, Wigdorovitz A, Trono K, et al. A novel methodology to develop a foot and mouth disease virus (FMDV) peptide-based vaccine in transgenic plants[J]. Vaccine, 2002, 20: 1141-1147. [100] Ziauddin A, Lee R W H, Lo R, et al. Transformation of alfalfa with a bacterial fusion gene, Mannheimia haemolytica A1 leukotoxin50-gfp: Response with Agrobacterium tumefaciens strains LBA4404 and C58[J]. Plant Cell Tissue and Organ Culture, 2004, 79: 271-278. [101] 张占路, 唐益雄, 吴燕民, 等. 百脉根表达 H5N1 亚型禽流感血凝素的研究[J]. 中国农业科学, 2008, 41(1): 303-307. [102] 王宝琴, 王小龙, 张永光, 等. FMDV vp1基因在豆科牧草百脉根中的转化与表达[J]. 中国病毒学, 2005, 20(5): 526-529. [103] 王炜, 张永光, 潘丽, 等. 口蹄疫病毒 P12A-3C免疫原基因在百脉根中的遗传转化与表达[J]. 中国人兽共患病学报, 2007, 23(3): 236-247. [104] 贺红霞, 林春晶, 王铭, 等. 乙肝表面抗原基因表达载体的构建及对百脉根的转化[J]. 农业生物技术学报, 2007, 15(1): 115-118. [105] 唐广立, 李传山, 陈明利, 等. 百脉根高频再生体系的建立及兔出血症病毒衣壳蛋白VP60基因的转化[J]. 分子植物育种, 2007, 5(4): 593-600. [106] 黎万奎, 陈幼竹, 周宇, 等. 肝片吸虫抗原基因转基因苜蓿再生的研究[J]. 四川大学学报(自然科学版), 2003, 40(1): 144-147. [107] 毛雅妮, 孙娟, 张德罡, 等. 苜蓿组织培养研究进展[J]. 草业科学, 2009, 26(9): 146-155. [108] Hilder V A, Barker R F, Samour R A, et al. Protein and cDNA sequences of Bowman-Birk protease inhibitors from the cowpea (Vigna unguiculata Walp.)[J]. Plant Molecular Biology, 1989, 13: 701-710. [109] Cervera M, Pina J A, Juárez J, et al. A broad exploration of a transgenic population of citrus: Stability of gene expression and phenotype[J]. Theoretical and Applied Genetics, 2000, 100: 670-677. [110] 唐燕琼, 胡新文, 郭建春, 等. 柱花草种质遗传多样性的 ISSR分析[J]. 草业学报, 2009, 18(1): 57-64. [111] 季杨, 张新全, 马啸, 等. 多花黑麦草品种(系)间杂交及其杂种后代 SRAP遗传分析[J]. 草业学报, 2009, 18(4): 260-265. |
[1] | ZHANG Yang, GUO Hai-jun, LIU Long-biao, WANG Sa, LIANG Ying, NIE Yu-zhe, LI Yu-hua. Cloning and expression of PtGAPDH from Puccinellia tenuiflora [J]. Acta Prataculturae Sinica, 2014, 23(2): 207-214. |
[2] | JIA Xue-jing, DONG Li-hua, DING Chun-bang, LI Xu, YUAN Ming. Effects of drought stress on reactive oxygen species and their scavenging systems in Chlorophytum capense var. medio-pictum leaf [J]. Acta Prataculturae Sinica, 2013, 22(5): 248-255. |
[3] | YANG Xiao-ju, ZHAO Xin, SHI Yong, LI Xin-rong. Effects of salt stress on ion distribution in different Echinops gmelini organs [J]. Acta Prataculturae Sinica, 2013, 22(4): 116-122. |
[4] | LIU Jin-hai, WANG He-hua, ZUO Ying-mei, HUANG Bi-zhi, CHANG Ning, LIU Guo-dao, ZHOU Chao. Evaluating the adaptation of 14 Brachiaria varieties in southern subtropical areas of Yunnan [J]. Acta Prataculturae Sinica, 2013, 22(3): 60-. |
[5] | REN Ai-qin, YI Jin, GAO Hong-wen, LI Jun, WANG Xue-min. Cloning and expression analysis of the promoter of Caragana korshinskii gene [J]. Acta Prataculturae Sinica, 2013, 22(2): 165-170. |
[6] | LI Hong-yan, LI Zhi-yong, SHI Wen-gui, CAI Li-yan, LIU Lei. A study on leaf anatomic traits and drought resistance of Medicago rutenica in Inner Mongolia [J]. Acta Prataculturae Sinica, 2012, 21(3): 138-146. |
[7] | ZENG Liang, LI Min-quan, YANG Xiao-ming. Genetic diversity of Pisum sativum germplasm resources by ISSR [J]. Acta Prataculturae Sinica, 2012, 21(3): 125-131. |
[8] | DONG Li-ping, LI Xian-ting, CAO Jing, SU Yi-bing, DAI Li-lan, CHU Jin-peng. Dynamics of soil salt content in the rhizosphere soils of four salt-tolerant forage species [J]. Acta Prataculturae Sinica, 2011, 20(6): 68-76. |
[9] | WANG Xiao-li, LIU Xiao-xia, WANG Shu-yin, YANG Yi-cheng, WU Jia-hai. Cloning and differential expression analysis of S-adenosylmethionine decarboxylase gene FaSAMDC in tall fescue [J]. Acta Prataculturae Sinica, 2011, 20(4): 169-179. |
[10] | LUO Yong, HONG Ru, YANG Lie. The response to different irrigation and fertilizer treatments of two tall fescues under heat and drought stress [J]. Acta Prataculturae Sinica, 2011, 20(1): 46-54. |
[11] |
WANG Zhou, LIU Jian-xiu.
Advances in studies on DREB/CBF transcription factors, and their applications in genetic engineering for stress tolerance of turf and forage grasses [J]. Acta Prataculturae Sinica, 2011, 20(1): 222-236. |
[12] | GUO Pu, ZHANG Yan, GAO Xin-zhong. Growth dynamics and optimum harvest period of sorghum hybrid sudangrass [J]. Acta Prataculturae Sinica, 2011, 20(1): 31-37. |
[13] | GUO Ying, HAN Rui-lian, LIANG Zong-suo. Effect of soil drought on growth and water use efficiency characteristicsof four native gramineous grasses in Loess Plateau [J]. Acta Prataculturae Sinica, 2010, 19(2): 21-30. |
[14] |
TANG Feng-lan, LIU Li, CHEN Ji-shan, ZHANG Yue-xue, HAN Wei-bo, LIU Jie-lin, LIU Feng-qi. A preliminary study on effect of feeding characters and quality traits inM1 of Lactuca indica by different mutation treatments [J]. Acta Prataculturae Sinica, 2010, 19(2): 248-252. |
[15] | WANG Yu-hua, HAO Jian-guo, JIA Jing-fen. Cloning of homologous targeting sequences and construction of antibiotic-freeplastid site-specific integration expression vector of chicory [J]. Acta Prataculturae Sinica, 2009, 18(6): 72-81. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||