[1] 杨万勤, 张健. 土壤生态研究[M]. 成都: 四川科学技术出版社, 2008: 67-79. [2] Wu F Z, Yang W Q, Zhang J, et al. Cadmium accumulation and growth responses of a poplar (Populus deltoids×Populus nigra) in cadmium contaminated purple soil and alluvial soil[J]. Journal of Hazardous Materials, 2010, 177: 268-273. [3] Singh R P, Tripathi R D, Sinha S K, et al. Response of higher plants to lead contaminated environment[J]. Chemosphere, 1997, 34: 2467-2493. [4] Liu W H, Zhao J Z, Ouyang Z Y, et al. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China[J]. Environment International, 2005, 31: 805-812. [5] Reddy A M, Kumar S G, Jyothsnakumari G, et al. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.)[J]. Chemosphere, 2005, 60: 97-104. [6] Godbold D Y, Ketner C. Lead influences root growth and mineral nutrition of Picea abies seedlings[J]. Journal of Plant Physiology, 1991, 139: 95-99. [7] Islam E, Liu D, Li T, et al. Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi[J]. Journal of Hazardous Materials, 2008, 154: 914-926. [8] 李君, 周守标, 黄文江, 等. 马蹄金叶片中铜、铅含量及其对生理指标的影响[J]. 应用生态学报, 2004, 15(12): 2355-2358. [9] 王慧忠, 何翠屏, 赵楠. 铅对草坪植物生物量与叶绿素水平的影响[J]. 草业科学, 2003, 20(6): 73-75. [10] Singh R P, Tripathi R D, Sinha S K, et al. Response of higher plants to lead contaminated environment[J]. Chemosphere, 1997, 34: 2467-2493. [11] Verma S, Dubey R S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants[J]. Plant Science, 2003, 164: 645-655. [12] Rasheed P, Mukerji S. Changes in catalase and ascorbic acid oxidase activities in response to lead nitrate treatments in mungbean[J]. Indian Journal of Plant Physiology, 1991, 34: 143-146. [13] Zacchini M, Rea M, Tullio M, et al. Increased antioxidative capacity in maize calli during and after oxidative stress induced by a long lead treatment[J]. Plant Physiology and Biochemistry, 2003, 41: 49-54. [14] 王慧忠, 张新全, 何翠屏. Pb对匍匐翦股颖根系超氧化物歧化酶活性的影响[J]. 农业环境科学学报, 2006, 25(3): 644-647. [15] 蔡仕珍, 潘远智, 陈其兵, 等. 低温胁迫对花叶细辛生理生化及生长的影响[J]. 草业学报, 2010, 19(1): 95-102. [16] Luna C M, Gonzalez C A, Trippi V S. Oxidative damage caused by an excess of copper in oat leaves[J]. Plant Cell Physiology, 1994, 35: 11-15. [17] Mishra A, Choudhuri M A. Possible implications of heavy metals (Pb2+ and Hg2+) in the free radical-mediated membrane damage in two rice cultivars[J]. Indian Journal of Plant Physiology, 1996, 1: 40-43. [18] Cardinales C, Put C, Van Assche F, et al. The superoxide dismutase as a biochemical indicator discriminating between zinc and cadmium toxicity[J]. Archives Internationales De Physiologie De Biochimie Et De Biophysique, 1984, 92: 27-28. [19] Küpper H, Küpper F, Spiller M. Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants[J]. Journal of Experimental Botany, 1996, 47: 259-266. [20] 孔祥生, 易现峰. 植物生理学实验技术[M]. 北京: 中国农业出版社, 2008: 2. [21] 波钦诺克 X H. 植物生物化学分析方法[M]. 荆家海, 丁钟荣, 译. 北京: 科学出版社, 1981: 197-209. [22] 严重玲, 洪业汤, 付舜珍, 等. Cd、Pb胁迫对烟草叶片中活性氧清除系统的影响[J]. 生态学报, 1997, 17(5): 488-492. [23] 张永峰, 殷波. 混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响[J]. 草业学报, 2009, 18(1): 46-50. [24] 李源, 李金娟, 魏小红. 镉胁迫下蚕豆幼苗抗氧化能力对外源NO和H2O2的响应[J]. 草业学报, 2009, 18(6): 186-191. [25] Bidar G, Garcon G, Pruvot C, et al. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity[J]. Environmental Pollution, 2007, 147: 546-553. [26] 孙宗玖, 李培英, 阿不来提, 等. 干旱复水后4份偃麦草渗透调节物质的响应[J]. 草业学报, 2009, 18(5): 52-57. |