[1] Boyer J S. Plant productivity and environment[J]. Science, 1982, 218: 443-448. [2] 山仑, 黄占斌, 张岁岐. 节水农业[M]. 北京:清华大学出版社和暨南大学出版社, 2000: 12-13. [3] 陶岩. 中国东北地区天然草地中豆科植物的分布规律研究[D]. 长春: 东北师范大学, 2005. [4] 温都苏, 阿拉塔, 于斌. 内蒙古野生苜蓿种质资源及其开发利用前景[J]. 畜牧与饲料科学, 2004, 25(6): 72-74. [5] 景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响[J]. 草业学报, 2011, 20(2): 134-139. [6] 刘晓静, 郝凤, 张德罡, 等. 抗冻基因CBF2表达载体构建及转化紫花苜蓿的研究[J]. 草业学报, 2011, 20(2): 193-200. [7] Pennycooke J C, Cheng H, Stockinger E J. Comparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes[J]. Plant Physiology, 2008, 146: 1242-1254. [8] Zhang L L, Zhao M G, Tian Q Y, et al. Comparative studies on tolerance of Medicago truncatula and Medicago falcata to freezing[J]. Planta, 2011, 234: 445-457. [9] Li Y S, Gao Y, Tian Q Y, et al. Stimulation of root acid phosphatase by phosphorus deficiency is regulated by ethylene in Medicago falcata[J]. Environmental and Experimental Botany, 2011, 71: 114-120. [10] Li Y S, Mao X T, Tian Q Y, et al. Phosphorus deficiency-induced reduction in root hydraulic conductivity is mediated by ethylene in Medicago falcata[J]. Environmental and Experimental Botany, 2009, 67: 172-177. [11] 高艳, 田秋英, 石凤翎, 等. 黄花苜蓿与蒺藜苜蓿对土壤低磷胁迫适应策略的比较研究[J]. 植物生态学报, 2011, 35(6): 632-640. [12] 吕世杰. 黄花苜蓿抗旱、耐盐生理特性及其抗性机理的初步研究[D]. 呼和浩特: 内蒙古农业大学, 2007. [13] Cook D R. Medicago truncatula-a model in the making! Commentary[J]. Current Opinion in Plant Biology, 1999, 2: 301-304. [14] Zhang J Y, Broeckling C D, Blancaflor E B, et al. Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicago sativa)[J]. Plant Journal, 2005, 42: 689-707. [15] 魏臻武, 盖钧镒. 豆科模式植物——蒺藜苜蓿[J]. 草业学报, 2008, 17(1): 114-120. [16] Wang T Z, Chen L, Zhao M G, et al. Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing[J]. BMC Genomics, 2011, 12: 367. [17] Diatchenko L, Chrislau Y F, Campbell A P, et al. Suppression subtractive hybridization: a method for generating differentially regulatedor tissue-specific cDNA probe[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93: 6025-6030. [18] Puckette M, Peal L, Steele J, et al. Ozone responsive genes in Medicago truncatula: Analysis by suppression subtraction hybridization[J]. Journal of Plant Physiology, 2009, 166: 1284-1295. [19] 韩明鹏, 王彦华, 高永, 等. 高温胁迫下紫花苜蓿抑制消减文库的构建[J]. 草业学报, 2011, 20(5): 126-132. [20] Zheng J, Zhao J F, Tao Y Z, et al. Isolation and analysis of water stress induced genes in maize seedlings by subtractive PCR and cDNA macroarray[J].Plant Molecular Biology, 2004, 55: 807-823. [21] Wang H G, Zhang H L, Gao F H, et al. Comparison of gene expression between upland and lowland rice cultivars under water stress using cDNA microarray[J]. Theoretical and Applied Genetics, 2007, 115: 1109-1126. [22] Ashburner M, Ball C A, Blake J A, et al. Gene Ontology: tool for the unification of biology[J]. Nature Genetics, 2000, 25: 25-29. [23] Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28: 27-30. [24] Zhou C, Han L, Pislariu C, et al. From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for Alfalfa improvement[J]. Plant Physiology, 2011, 157: 1483-1496. [25] 张党权, 明付焕, 江平, 等. 绵毛优若藜冷诱导SSH文库构建研究[J]. 中南林业科技大学学报, 2000, 30(2): 65-69. [26] 叶武威, 赵云雷, 王俊娟, 等. 盐胁迫下陆地棉耐盐品种根系的抑制消减文库构建[J]. 棉花学报, 2009, 21(5): 339-345. [27] 张俊红. 低磷胁迫大豆SSH文库构建与分析[D]. 保定: 河北农业大学, 2001. [28] Ohmetakagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995, 7: 173-182. [29] Zhou J, Tang X, Martin G B. The Pto kinase conferring resistance to tomato bacterial speck disease interacts with proteins that bind a cis-element of pathogenesis-related genes[J]. EMBO Journal, 1997, 16: 3207-3232. [30] 刘强, 赵南明. DREB转录因子在提高植物抗逆性中的作用[J]. 科学通报, 2000, 45(1): 11-16. [31] Middleton P H, Jakab J, Penmetsa R V, et al. An ERF transcription factor in Medicago truncatula that is essential for nod factor signal transduction[J]. Plant Cell, 2007, 19: 1221-1234. [32] 刘广宇, 魏令波, 陈吉龙, 等. 植物脱水素研究进展[J]. 生物工程进展, 2001, 21(2): 24-28. |