[1] 乔建江, 王堃, 杨青川. 苜蓿转基因的研究现状和前景[J]. 中国草地学报, 2006, 28(5): 98-103. [2] 苏玉春, 韩微微, 陈光. 紫花苜蓿组织培养再生体系的建立[J].中国草地学报, 2008, 30(2): 43-53. [3] 刘小琳, 王继峰, 胡晓艳, 等. 根癌农杆菌介导的紫花苜蓿遗传转化体系的建立与优化[J]. 中国草地学报, 2007, 29(2): 102-106. [4] Brouwer D J, Duke S H, Osborn T C. Mapping genetic factors associate with winter hardiness, fall growth and freezing injury in autotetraploid alfalfa[J]. Crop Science, 2000, 40: 1387-1396. [5] Winicov I, Bastola D R. Transgenic over expression of the transcription factor Alfinl enhances expression of the endogenous MsPRP2 gene in alfalfa and improves salinity tolerance of the plants[J]. Plant Physiology, 1999, 120(2): 473-480. [6] Munnik T, Ligterink W, Meskiene I. Distinct osmosensing protein kinase pathways are involved in signalling moderate and severe hyper osmotic stress[J]. Plant Jourrnal, 1997, 20: 381-388. [7] 江腾, 林勇祥, 刘雪, 等. 苜蓿全基因组WRKY转录因子基因的分析[J]. 草业学报, 2011, 20(3): 211-218. [8] 刘晓静, 郝凤, 张德罡, 等. 抗冻基因CBF2表达载体构建及转化紫花苜蓿的研究[J]. 草业学报, 2011, 20(2): 193-200. [9] 燕丽萍, 夏阳, 梁慧敏, 等. 转BADH基因苜蓿T1代遗传稳定性和抗盐性的研究[J]. 草业学报, 2009, 18(6): 65-71. [10] 蒋世翠, 王义, 孙春玉, 等. αFGF植物表达载体构建及转化紫花苜蓿的初步研究[J]. 草业学报, 2011, 20(4): 180-186. [11] 杨青川, 孙彦, 康俊梅. 紫花苜蓿耐盐相关基因研究进展[J]. 草地学报, 2005, 13(3): 253-256. [12] Bai Y Q, Yang Q C, Kang J M, et al. Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1[J]. Molecular Biolology Reports, 2012, 39(3): 2883-2892. [13] Deutch C E, Winicov I. Post transcriptional regulation of a salt inducible alfalfa gene encoding a putative chimeric proline rich cell wall protein[J]. Plant Molecular Biology, 1995, 27: 411-418. [14] Borsics T, Lados M. cDNA cloning of a mechanical/abiotic stress-inducible calmodulin-related gene form dodder-infected alfalfa[J]. Plant cell and Environment, 2001, 24: 649-656. [15] Ginzberg I, stein H, Kapulnik Y. Isolation and characterization of two different cDNAs of Delta(1)-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress[J]. Plant Molecular Biology, 1998, 38(5): 755-764. [16] Chao Y H, Kang J M, Sun Y, et al. Molecular cloning and characterization of a novel gene encoding zinc finger protein from Medicago sativa L.[J]. Molecular Biology Reports, 2009, 36: 2315-2321. [17] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA[J]. Nucleic Acids Research, 1980, 8(19): 4321-4325. [18] Niu X, Renshaw-Gegg L, Miller L, et al. Bipartite determinants of DNA binding specificity of plant basic leucine zipper protein[J]. Plant Molecular Biology, 1999, 41: 1-13. [19] Lee S C, Choi H W, Hwang I S, et al. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses[J]. Planta, 2006, 224: 1209-1225. [20] Mallappa C, Yadav V, Negi P, et al. A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis[J]. Journal of Biology Chemical, 2006, 281: 22190-22199. [21] Brocard I M, Lynch T J, Finkelstein R R. Regulation and role of the Arabidopsis ABA-insensitive 5 gene in ABA, sugar and stress response[J]. Plant Physiology, 2002, 129: 1533-1543. [22] Nijhawan A, Jain M, Tyagi A K, et al. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice[J]. Plant Physiology, 2008, 146: 333-350. [23] 白静仁. 我国苜蓿品种资源的发展及利用[J]. 中国草地, 1990, 4: 57-60. [24] Nieva1 C, Peter K B, Domìnguez-Puigjaner E, et al. Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28[J]. Plant Molecular Biology, 2005, 58: 899-914. [25] Rodriguez-Uribe L, O’Connell M A. A root-specific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius)[J]. Journal of Experiment Botany, 2006, 57: 1391-1398. [26] Moran J F, Becana M, Iturke O I, et al. Drought induces oxidative stress in peaplants[J]. The Plant Journal, 1994, 94: 346-352. [27] 汤章城. 逆境条件下植物游离脯氨酸的累积及其可能的意义[J]. 植物生理学通讯, 1984, 4: 27-32. [28] Greenway H, Munne R. Mechanisms of salt tolerance in non-halophytes[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1980, 31: 149-190. [29] Sunkar R, Bartels D, Kirch H H. Overexpression of a stress inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance[J]. Plant Journal, 2003, 35: 452-464. [30] Latha R, Salekdeh G H, Bennett J, et al. Molecular analysis of a stress induced cDNA encoding the translation initiation factor, eIF1, from the salt tolerant wild relative of rice, Porteresia coarctata[J]. Function of Plant Biology, 2004, 31: 1035-1041. [31] Rausell A, Kanhonou R, Yenush L, et al. The translation initiation factor eIF1A is an important determinant in the tolerance to NaCl stress in yeast and plants[J]. The Plant Journal, 2003, 34: 257-267. [32] Parvaiz A, Satyawati S. Salt stress and phyto-biochemical responses of plants-a review[J]. Plant Soil Environment, 2008, 54: 89-99. [33] Chen C, Tao C, Peng H, et al. Genetic analysis of salt stress responses in asparagus bean (Vigna unguiculata L. ssp. sesquipedalis Verdc.)[J]. Journal of Heredity, 2007, 98: 655-665. |