Acta Prataculturae Sinica ›› 2012, Vol. 21 ›› Issue (6): 296-305.
Previous Articles Next Articles
ZHANG Li-quan, ZHANG Feng-ying, HASI Agula
Received:
2012-04-09
Online:
2012-06-25
Published:
2012-12-20
CLC Number:
ZHANG Li-quan, ZHANG Feng-ying, HASI Agula. Research progress on alfalfa salt tolerance[J]. Acta Prataculturae Sinica, 2012, 21(6): 296-305.
[1] 曹宏, 章会玲, 盖琼辉, 等. 22个紫花苜蓿品种的引种试验和生产性能综合评价[J]. 草业学报, 2011, 20(6): 219-229. [2] Bekki A, Trinchant J C, Rigaud J. Nitrogen fixation (C2H2 reduction) by Medicago nodules and bacteroids under sodium chloride stress[J]. Physiologia Plantarum, 1987, 71: 61-67. [3] Dobrenz A K, Robinson D L, Smith S E, et al. Registration of AZ-germ salt-II nondormant alfalfa germplasm[J]. Crop Science, 1989, 29: 493. [4] Johnson D W, Smith S E, Dobrenz A K. Registration of AZ-90NDC-ST nondormant alfalfa germplasm with improved forage yield in saline environments[J]. Crop Science, 1991, 31: 1098-1099. [5] Al-Doss A A, Smith S E. Registration of AZ-97MEC and AZ-97MEC-ST very non-dormant alfalfa germplasm pools with increased shoot weight and differential response to saline irrigation[J]. Crop Science, 1998, 38: 568. [6] Dobrenz A K. Salt-tolerant alfalfa[P]. United States Patent: 6005165, 1999-10-21. [7] Downes R W. New herbage Cultivars Medicago sativa CV. Alfalfa[J]. Tropical Grasslands, 1994, 28: 191-192. [8] Peel M D, Waldron B L, Jensen K B, et al. Screening for salinity tolerance in alfalfa: A repeatable method[J]. Crop Science, 2004, 44(6): 2049-2053. [9] 赵桂琴, 慕平, 张勃. 紫花苜蓿基因工程研究进展[J]. 草业学报, 2006, 15(6): 9-18. [10] 张玉成, 刘凤泉, 刘肇清, 等. 沧州苜蓿的品种特性及利用[J]. 草与畜杂志, 1992, 3: 5-7. [11] 张令进, 朱树森. 无棣紫花苜蓿[J]. 农业知识, 1997, 9: 23. [12] 李红, 罗新义, 王殿魁. “龙牧801”和“龙牧803号”苜蓿新品种选育报告[J]. 黑龙江畜牧科技, 1996, 1: 3-7. [13] 杨青川, 耿华珠, 孙彦. 耐盐苜蓿新品种中苜一号[J]. 作物品种资源, 1999, 2: 26. [14] 2006年度全国草品种审定委员会审定通过的草品种名录(一)[J]. 草业科学, 2007, 24(5): 99. [15] 李红. 高产、高蛋白、高抗性龙牧806号苜蓿[J]. 牧草与饲料, 2007, 1(3): 64. [16] 贾春林, 杨秋玲, 吴波, 等. 鲁苜1号紫花苜蓿选育及栽培技术[J]. 山东农业科学, 2008, 5: 100-103. [17] 李红, 杨曌, 黄新育, 等. 龙牧808紫花苜蓿新品种选育报告[J]. 中国草地学报, 2011, 33(3): 12-17. [18] Torabi M, Halim R A, Sinniah U R, et al. Influence of salinity on the germination of Iranian alfalfa ecotypes[J]. African Jouranl of Agricultural Reserch, 2011, 6(19): 4624-4630. [19] Rogers M E, Grieve C M, Shannon M C. The response of lucerne (Medicago sativa L.) to sodium sulphate and chloride salinity[J]. Plant and Soil, 1998, 202: 271-280. [20] Boughanm N, Michonneau P, Daghfous D, et al. Adaptation of Medicago sativa cv. Gabes to long-term NaCl stress[J]. Journal of Plant Nutrition Soil Science, 2005, 168: 262-268. [21] Guerrero-Rodríguez J D, Revell D K, Bellotti W D. Mineral composition of lucerne (Medicago sativa) and white melilot (Melilotus albus) is affected by NaCl salinity of the irrigation water[J]. Animal Feed Science and Technology, 2011, 170: 97-104. [22] Wang X S, Han J G. Changes of proline content, activity, and active isoforms of antioxidative enzymes in two Alfalfa cultivars under salt stress[J]. Agricultural Sciences in China, 2009, 8(4): 431-440. [23] Wang W B, Kim Y H, Lee H S, et al. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses[J]. Plant Physiology and Biochemistry, 2009, 47: 570-577. [24] Babakhani B, Khavari-Nejad R A, Sajedi R H, et al. Biochemical responses of Alfalfa (Medicago sativa L.) cultivars subjected to NaCl salinity stress[J]. African Journal of Biotechnology, 2011, 10(55): 11433-11441. [25] Bao A K, Guo Z G, Zhang H F, et al. A procedure for assessing the salt tolerance of lucerne (Medicago sativa L.) cultivar seedlings by combining agronomic and physiological indicators[J]. New Zealand Journal of Agricultural Research, 2009, 52(4): 435-442. [26] 景艳霞, 袁庆华. NaCl胁迫对苜蓿幼苗生长及不同器官中盐离子分布的影响[J]. 草业学报, 2011, 20(2): 134-139. [27] Wu C H, Wang Q Z, Xie B, et al. Effects of drought and salt stress on seed germination of three leguminous species[J]. African Journal of Biotechnology, 2011, 10(78): 17954-17961. [28] 申玉华, 徐振军, 李文辉, 等. 维生素C浸种对盐胁迫下紫花苜蓿种子发芽特性的影响[J]. 种子, 2009, 28(7): 42-44. [29] 解秀娟, 胡晋. 沙引发对紫花苜蓿种子盐逆境下发芽及幼苗生理生化变化的影响[J]. 种子, 2003, 4: 5-6. [30] Wang Y Q, Li L, Cui W T, et al. Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway[J]. Plant and Soil, 2011, 351: 107-119. [31] Rejili M, Telahigue D, Lachiheb B, et al. Impact of gamma radiation and salinity on growth and K+/Na+ balance in two populations of Medicago sativa (L.) cultivar Gabes[J]. Progress in Natural Science, 2008, 18: 1095-1105. [32] Maggio A, Chiaranda F Q, Cefariello R, et al. Responses to ozone pollution of alfalfa exposed to increasing salinity levels[J]. Environmental Pollution, 2009, 157: 1445-1452. [33] 葛莹, 李建东. 盐生植被在土壤积盐—脱盐过程中作用的初探[J]. 草业学报, 1990, 1(1): 70-76. [34] Peng Y L, Gao Z W, Gao Y, et al. Eco-physiological characteristics of Alfalfa seedlings in response to various mixed salt-alkaline stresses[J]. Journal of Integrative Plant Biology, 2008, 50(1): 29-39. [35] Gao Z W, Zhu H, Gao J C, et al. Germination responses of Alfalfa (Medicago sativa L.) seeds to various salt-alkaline mixed stress[J]. African Jouranl of Agricultural Reserch, 2011, 6(16): 3793-3803. [36] 张永峰, 梁正伟, 隋丽, 等. 盐碱胁迫对苗期紫花苜蓿生理特性的影响[J]. 草业学报, 2009, 18(4): 230-235. [37] 张永峰, 殷波. 混合盐碱胁迫对苗期紫花苜蓿抗氧化酶活性及丙二醛含量的影响[J]. 草业学报, 2009, 18(1): 46-50. [38] Aydi S, Sassi S, Abdelly C. Growth, nitrogen fixation and ion distribution in Medicago truncatula subjected to salt stress[J]. Plant and Soil, 2008, 32: 59-67. [39] Mhadhbi H, Aouani M E. Growth and nitrogen-fixing performances of Medicago truncatula-Sinorhizobium meliloti symbioses under salt (NaCl) stress: Micro-and macro-symbiont contribution into symbiosis tolerance[J]. Biosaline Agriculture and High Salinity Tolerance, 2008, 1: 91-98. [40] Salah I B, Slatni T, Albacete A, et al. Salt tolerance of nitrogen fixation in Medicago ciliaris is related to nodule sucrose metabolism performance rather than antioxidant system[J]. Symbiosis, 2010, 51: 187-195. [41] Rogers M E, Grieve C M, Shannon M C. Plant growth and ion relations in lucerne (Medicago sativa L.) in response to the combined effects of NaCl and P[J]. Plant and Soil, 2003, 253: 187-194. [42] AI-Khatib-M M, Collins J C. Between and with in culture variability in salt tolerance in Lucerne[J]. Genetic Resources and Crop Evoluation, 1994, 41(3): 159-164. [43] Li R L, Shi C, Fukuda K, et al. Effects of salt and alkali stresses on germination, growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L.)[J]. Soil Science and Plant Nutrition, 2010, 56: 725-733. [44] Johnson D W, Smith S E, Dobrenz A K. Genetic and phenotypic relationship in response to NaCl at different developmental stages in alfalfa[J]. Theoretical and Applied Genetics, 1992, 83: 833-838. [45] McCoy T J. Tissue culture evaluation of NaCl tolerance in Medicago species[J]. Plant Cell Reports, 1987, 8(3): 31-34. [46] 于卓, 孙祥, 张文忠, 等. 苜蓿品种间种子萌发及苗期耐盐性差异的研究[J]. 干旱区资源与环境, 1993, 7(2): 106-111. [47] 李国良, 刘香萍, 迟文峰, 等.紫花苜蓿耐盐性生理的初步研究[J]. 现代畜牧兽医, 2007, 3: 26-27. [48] 刘春华, 张文淑. 六十九个苜蓿品种耐盐性及其二个耐盐生理指标的研究[J]. 草业科学, 1993, 10(6): 16-22. [49] 任卫波, 韩建国, 张蕴薇, 等. 红外光谱紫花苜蓿品种耐盐性鉴别方法研究[J]. 光谱学与光谱分析, 2009, 29(2): 386-388. [50] 李源, 刘贵波, 高洪文, 等. 紫花苜蓿种质耐盐性综合评价及盐胁迫下的生理反应[J]. 草业学报, 2010, 19(4): 79-86. [51] 姜健, 杨宝灵, 夏彤, 等. 紫花苜蓿耐盐种质资源的遗传多样性分析[J]. 草业学报, 2011, 20(5): 119-125. [52] 安宝燕, 罗琰, 李加瑞, 等. 紫花苜蓿Na+/H+ 逆向转运蛋白基因在拟南芥中表达提高转基因植株的耐盐性[J]. 作物学报, 2008, 34(4): 557-564. [53] Sibole J V, Cabot C, Michalke W, et al. Relationship between expression of the PM H+-ATPase, growth and ion partitioning in the leaves of salt-treated Medicago species[J]. Planta, 2005, 221: 557-566. [54] Ginzberg I, Stein H, Kapulnik Y, et al. Isolation and characterization of two different cDNAs of Delta(1)-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress[J]. Plant Molecular Biology, 1998, 38: 755-764. [55] Miller G, Stein H, Honig A, et al. Responsive modes of Medicago sativa proline dehydrogenase genes during salt stress and recovery dictate free proline accumulation[J]. Planta, 2005, 222(1): 70-79. [56] Deutch C E, Winicov I. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein[J]. Plant Molecular Biology, 1995, 27: 411-418. [57] Nolan K E, Saeed N A, Rose R J. The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis[J]. Plant Cell Reports, 2006, 25: 711-722. [58] Bai Y Q, Yang Q C, Kang J M, et al. Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1[J]. Molecular Biology Reports, 2012, 39: 2883-2892. [59] Jin H C, Sun Y, Yang Q C, et al. Screening of genes induced by salt stress from Alfalfa[J]. Molecular Biology Reports, 2010, 37: 745-753. [60] Winicov I. cDNA encoding putative zinc finger motifs from salt-tolerant alfalfa (Medicago sativa L.) cells[J]. Plant Physiology, 1993, 102: 681-682. [61] Bastola D R, Pethe V V, Winicov I. Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene[J]. Plant Molecular Biology, 1998, 38: 1123-1135. [62] Frugier F, Poirier S, Satiat-Jeunematre B, et al. A Krüppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis[J]. Genes Development, 2000, 14: 475-482. [63] Merchan F, Breda C, Hormaeche J, et al. A Krüppel-like transcription factor gene is involved in salt stress responses in Medicago spp.[J]. Plant and Soil, 2003, 257: 1-9. [64] Kang J M, Xie W W, Sun Y, et al. Identification of genes induced by salt stress from Medicago truncatula L. seedlings[J]. African Journal of Biotechnology, 2010, 45(9): 7589-7594. [65] Chao Y H, Kang J M, Sun Y, et al. Molecular cloning and characterization of a novel gene encoding zinc finger protein from Medicago sativa L.[J]. Molecular Biology Reports, 2009, 36: 2315-2321. [66] Rubio M C, Ramos J, Webb K J, et al. Expression studies of superoxide dismutases in nodules and leaves of transgenic alfalfa reveal abundance of iron-containing isozymes, posttranslational regulation, and compensation of isozyme activities[J]. Molecular Plant-Microbe Interactions, 2001, 14(10): 1178-1188. [67] Baudouin E, Frendo P, Le G M, et al. A Medicago sativa haem oxygenase gene is preferentially expressed in root nodules[J]. Journal of Experimental Botany, 2004, 55: 43-47. [68] 韩毅, 沈文飚. 血红素加氧酶/一氧化碳信号系统对汞、镉诱导的紫花苜蓿根部氧化胁迫的调节[D]. 南京: 南京农业大学, 2008. [69] Fu G Q, Jin Q J, Lin Y T, et al. Cloning and characterization of a heme oxygenase-2 gene from alfalfa (Medicago sativa L.)[J]. Applied Biochemistry Biotechnology, 2011, 165: 1253-1263. [70] Gargantini P R, Gonzalez-Rizzo S, Chinchilla D, et al. A CDPK isoform participates in the regulation of nodule number in Medicago truncatula[J]. Plant Journal, 2006, 48(6): 843-856. [71] Borsics T, Lados M. cDNA cloning of a mechanical/abiotic stress-inducible calmodulin-related gene from dodder-infected alfalfa[J]. Plant Cell and Environment, 2001, (24): 649-656. [72] Winicov I, Button J D. Accumulation of photosynthesis gene transcripts in response to sodium chloride by salt-tolerant alfalfa cells[J]. Planta, 1991, 183: 478-483. [73] Luo Y, Liu Y B, Dong Y X, et al. Expression of a putative alfalfa helicase increases tolerance toabiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment[J]. Journal of Plant Physiology, 2009, 166: 385-394. [74] Lee K W, Cha J Y, Kim K H, et al. Overexpression of alfalfa mitochondrial HSP23 in prokaryotic and eukaryotic model systems confers enhanced tolerance to salinity and arsenic stress[J]. Biotechnology Letters, 2012, 34(1): 167-174. [75] Deak M, Kiss G B, Korkz C, et al. Transformation of Medicago by agrobacterum mediated gene transfer[J]. Plant Cell Reports, 1986, 5: 97-100. [76] Bao A K, Wang S M, Wu G Q, et al. Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.)[J]. Plant Science, 2009, 176: 232-240. [77] Verdoy D, Coba P T, Redondo F J, et al. Transgenic Medicago truncatula plants that accumulate proline display nitrogen-fixing activity with enhanced tolerance to osmotic stress[J]. Plant Cell Environment, 2006, 29: 1913-1923. [78] Coba de la Pea T C, Francisco J R, Esteban M, et al. Nitrogen fixation persists under conditions of salt stress in transgenic Medicago truncatula plants expressing a cyanobacterial flavodoxin[J]. Plant Biotechnology Journal, 2010, 8: 954-965. [79] Suárez R, Calderón C, Iturriaga G. Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose[J]. Crop Sciences, 2009, 49(5): 1791-1799. [80] Li W F, Wang D L, Jin T C, et al. The vacuolar Na+/H+ antiporter gene SsNHX1 from the halophyte Salsola soda confers salt tolerance in transgenic Alfalfa (Medicago sativa L.)[J]. Plant Molecular Biology Reporter, 2011, 29: 278-290. [81] Jin T C, Chang Q, Li W F, et al. Stress-inducible expression of GmDREB1 conferred salt tolerance in transgenic alfalfa[J]. Plant Cell, Tissue and Organ Culture, 2010, 100: 219-227. [82] Winicov I, Bastola D R. Transgenic overexpression of the transcription factor Alfin1 enhances expression of the endogenous MsPRP2 gene in Alfalfa and improves salinity tolerance of the plants[J]. Plant Physiology, 1999, 120: 473-480. [83] Winicov I. Alfinl transcription factor overexpression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa[J]. Planta, 2000, 210(3): 416-422. [84] 刘艳芝, 韦正乙, 邢少辰, 等. HAL1 基因转化苜蓿再生植株及其耐盐性[J]. 吉林农业科学, 2008, 33(6): 21-24. [85] 王瑛, 朱宝成, 孙毅, 等. 外源lea3基因转化紫花苜蓿的研究[J]. 核农学报, 2007, 21(3): 249-252. [86] 化烨. GsSAMS基因对苜蓿的遗传转化及转基因新株系的培育[D]. 哈尔滨: 东北农业大学, 2009. [87] 王玉祥, 王涛, 张博. 转rstB基因苜蓿耐盐性初评[J]. 草地学报, 2008, 16(5): 539-541. [88] 王玉祥, 张博, 王涛. 盐胁迫对苜蓿叶绿素、甜菜碱含量和细胞膜透性的影响[J]. 草地科学, 2009, 26(3): 53-55. [89] 梁慧敏, 夏阳, 孙仲序, 等. 根癌农杆菌介导苜蓿遗传转化体系的建立[J]. 农业生物技术学报, 2005, 13: 152-156. [90] 燕丽萍, 夏阳, 梁慧敏, 等. 转BADH基因苜蓿T1代遗传稳定性和抗盐性研究[J]. 草业学报, 2009, 18(6): 65-71. [91] 燕丽萍, 夏阳, 毛秀红, 等. 转BADH基因紫花苜蓿山苜2号品种的抗盐性鉴定及系统选育[J]. 植物学报, 2011, 46(3): 293-301. [92] Yan L P, Liu C L, Liang H M, et al. Physiological responses to salt stress of T2 alfalfa progenies carrying a transgene for betaine aldehyde dehydrogenase[J]. Plant Cell, Tissue and Organ Culture, 2012, 108: 191-199. [93] Liu Z H, Zhang H M, Li G L, et al. Enhancement of salt tolerance in alfalfa transformed with the gene encoding for betaine aldehyde dehydrogenase[J]. Euphytica, 2011, 178: 363-372. [94] 张立全, 牛一丁, 郝金凤, 等. 通过花粉管通道法导入红树总DNA获得耐盐紫花苜蓿T0代植株及其RAPD验证[J]. 草业学报, 2011, 20(3): 292-297. [95] 张立全, 敖登花, 师文贵, 等. 转红树总DNA紫花苜蓿T1代耐盐株系的生理生化特性分析[J]. 草业学报, 2012, 21(2): 149-155. [96] Ashraf M, Akram N A. Improving salinity tolerance of plants through conventional breeding and genetic engineering: An analytical comparison[J]. Biotechnology Advances, 2009, 27: 744-752. [97] Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants[J]. Crop Science, 2005, 45: 437-448. [98] 马金星, 张吉宇, 单丽燕, 等. 中国草品种审定登记工作进展[J]. 草业学报, 2011, 20(1): 206-213. [99] Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53: 247-273. [100] 王舟, 刘建秀. DREB/CBF类转录因子研究进展及其在草坪草和牧草抗逆基因工程中的应用[J]. 草业学报, 2011, 20(1): 222-236. [101] 耿华珠, 李聪, 李茂森.苜蓿耐盐性鉴定初报[J]. 中国草地, 1990, 2: 69-72. [102] Ferradini N, Nicolia A, Capomaccio S, et al. Assessment of simple marker-free genetic transformation techniques in alfalfa[J]. Plant Cell Reporter, 2011, 30: 1991-2000. [103] Ferradini N, Nicolia A, Capomaccio S, et al. A point mutation in the Medicago sativa GSA gene provides a novel, efficient, selectable marker for plant genetic engineering[J]. Journal of Biotechnology, 2011, 156: 147-152. |
[1] | ZHANG Qian-bing,Anwar Ahmat,YU Lei,LU Wei-hua,CHANG Qing. Effects of different irrigation methods and quantities on soil salt transfer in oasis alfalfa fields [J]. Acta Prataculturae Sinica, 2014, 23(6): 69-77. |
[2] | WANG Shao-fei,LUO Yong-cong,ZHANG Xin-quan,HUANG Lin-kai,MA Xiao,LIU Lian. The production performance of 14 annual ryegrass varieties in the southwest of Sichuan Province [J]. Acta Prataculturae Sinica, 2014, 23(6): 87-94. |
[3] | WANG Yong,YUAN Xian-jun,GUO Gang,WEN Ai-you,WANG Jian,XIAO Shen-hua,YU Cheng-qun,BA Sang,SHAO Tao. Fermentation and aerobic stability of mixed ration forages in Tibet [J]. Acta Prataculturae Sinica, 2014, 23(6): 95-102. |
[4] | WANG Hong-ze,WANG Zhi-sheng,KANG Kun,ZOU Hua-wei,SHEN Jun-hua,HU Rui. Effects of corn flour and lactic acid bacteria on quality of mixed silage made from sweet potato vines, distiller’s grains and rice straw [J]. Acta Prataculturae Sinica, 2014, 23(6): 103-110. |
[5] | QIN Fang-cuo,ZHAO Gui-qin,JIAO Ting,HAN Yong-jie,HOU Jian-jie,SONG Xu-dong. Effects of different moisture contents and additives on the quality of baled oat silage [J]. Acta Prataculturae Sinica, 2014, 23(6): 119-125. |
[6] | QIU Xiao-yan,YUAN Xian-jun,GUO Gang,WEN Ai-you,YU Cheng-qun,BA Sang,SHAO Tao. Effects of molasses and acetic acid on fermentation and aerobic stability of total mixed ration silage in Tibet [J]. Acta Prataculturae Sinica, 2014, 23(6): 111-118. |
[7] | SHI Chuan-qi,LIU Mei,WANG Chen,ZHANG Xin-xin,CHENG Xin-yu. Taxonomic values for leaf structure in the tribe Vicieae (Leguminosae) in northeastern China [J]. Acta Prataculturae Sinica, 2014, 23(6): 157-166. |
[8] | HAN Bao-he,ZHU Hong. Effects of cadmium stress on accumulation ability, microstructure and physiological property in leaves of Trifolium repens [J]. Acta Prataculturae Sinica, 2014, 23(6): 167-175. |
[9] | LIU Hui-jie,LI Sheng,MA Shao-ying,ZHANG Pin-nan,SHI Zhen-zhen,YANG Xiao-ming. Responses of primary root and antioxidase system to exogenous Ca2+ in pea under H2O2 stress [J]. Acta Prataculturae Sinica, 2014, 23(6): 189-197. |
[10] | ZHANG Jun,SONG Li-li,GUO Dong-lin,GUO Chang-hong,SHU Yong-jun. Genome-wide identification and investigation of the MADS-box gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2014, 23(6): 233-241. |
[11] | KANG Jun-mei,ZHANG Tie-jun,WANG Meng-ying,ZHANG Yi,YANG Qing-chuan. Research progress in the quantitative trait loci (QTL) and genomic selection of alfalfa [J]. Acta Prataculturae Sinica, 2014, 23(6): 304-312. |
[12] | LI Jun-lin,ZHANG Xin-quan,YU Zhu,GUO Xu-sheng,MENG Xiang-kun,LUO Yan,YAN Yan-hong. Effects of moisture content and lactic acid bacteria additive on the quality of Italian ryegrass silage [J]. Acta Prataculturae Sinica, 2014, 23(6): 342-348. |
[13] | QI Jing-hua,ZHANG Feng,WANG Ying,SUN Guo-jun. Nitrogen dynamics under plastic mulching on the Loess Plateau [J]. Acta Prataculturae Sinica, 2014, 23(5): 13-23. |
[14] | TIAN Chen-xia,ZHANG Yong-mei,WANG Kai,ZHANG Wan. The anatomical structure responses in alfalfa to salinity-alkalinity stress of NaHCO3 [J]. Acta Prataculturae Sinica, 2014, 23(5): 133-142. |
[15] | SUN Hong,YU Ying-wen,MA Xiang-li,MU Xiao-ming,LIAO Jia-fa. A comprehensive evaluation of nutritional value of nine shrubs in the karst area of northwest Guizhou [J]. Acta Prataculturae Sinica, 2014, 23(5): 99-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||