[1] Thevs N. Tugay vegetation in the middle reaches of the Tarim River: vegetation types and their ecology[J]. Archives of Nature Conserv and Landscape Research, 2005, 44: 64-84. [2] Gries D, Foetzki A, Arndt S K, et al. Production of perennial vegetation in an oasis-desert transition zone in NW China-allometric estimation, and assessment of flooding and use effects[J]. Plant Ecology, 2005, 181: 23-43. [3] Thomas F M, Foetzki A, Arndt S K, et al. Water use by perennial plants in the transition zone between river oasis and desert in NW China[J]. Basic and Applied Ecology, 2006, 7: 253-267. [4] Chen Y N, Zilliacus H, Li W H, et al. Ground-water level affects plant species diversity along the lower reaches of the Tarim River, Western China[J]. Journal of Arid Environment, 2006, 66: 231-246. [5] Hao X M, Li W H, Huang X, et al. Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River, China[J]. Hydrological Process, 2010, 24: 178-186. [6] Wang R Z. C4 plants in the deserts of China: occurrence of C4 photosynthesis and its morphological functional types[J]. Photosynthetica, 2007, 45: 167-171. [7] Singh G. Influence of soil moisture and gradient on growth and biomass production of Calligonum polygonoides in Indian desert affected by surface vegetation[J]. Journal of Arid Environment, 2004, 56: 541-558. [8] Dhief A, Gorai M, Aschi-Smiti S, et al. Comparative phonological and water potential patterns of three Calligonum species in the eastern Great Erg of Tunisia[J]. Flora, 2009, 204(8): 581-592. [9] 邱真静, 李毅, 种培芳. PEG 胁迫对不同地理种源沙拐枣生理特性的影响[J]. 草业学报, 2011, 20(3): 108-114. [10] Lambers H, Chapin F S, Pons T L. Photosynthesis in Plant Physiological Ecology[M]. New York Inc: Springer-verlag, 1998: 8-50. [11] 朱成刚, 李卫红, 马建新, 等. 塔里木河下游地下水位对柽柳叶绿素荧光特性的影响[J]. 应用生态学报, 2010, 21(7): 1689-1696. [12] 莫亿伟, 郭振飞, 谢江辉. 温度胁迫对柱花草叶绿素荧光参数和光合速率的影响[J]. 草业学报, 2011, 20(1): 96-101. [13] Hamerlynck E P, Huxman T E. Ecophysiology of two sonoran desert evergreen shrubs during extreme drought[J]. Journal of Arid Environment, 2009, 73: 582-585. [14] Mathur S, Allakhverdiev S I, Jajoo A. Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of photosystem II in wheat leaves (Triticum aestivum)[J]. Biochimicaet Biophysica Acta, 2011, 1807: 22-29. [15] 霍成君, 韩建国, 洪绂曾, 等. 刈割期及留茬高度对混播草地产草量及品质的影响[J]. 草地学报, 2001, 9(4): 257-264. [16] 丁成龙, 顾洪如, 许能祥, 等. 不同刈割期对多花黑麦草饲草产量及品质的影响[J]. 草业学报, 2011, 20(6): 186-194. [17] 章家恩, 刘文高, 陈景青, 等. 不同刈割强度对牧草地上部和地下部生长性状的影响[J]. 应用生态学报, 2005, 16(9): 1740-1744. [18] 郭正刚, 刘慧霞, 王彦荣. 刈割对紫花苜蓿根系生长影响的初步分析[J]. 西北植物学报, 2004, 24(2): 215-220. [19] 张永亮, 胡自强, 赵海新, 等. 刈割对混播当年生物量及再生速率的影响[J]. 草地学报, 2004, 4: 308-312. [20] Liu J Z, Chen Y N, Chen Y J, et al. Degradation of Populus euphratica community in the lower reaches of the Tarim River, Xinjiang, China[J]. Journal of Environmental Sciences, 2005, 17(5): 740-747. [21] Oxborough K, Baker N R. Resolving chlorophyll fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qP and Fv /Fm without measuring Fo′[J]. Photosynthesis Research, 1997, 54: 135-142. [22] Genty B, Briantais J M, Baker N R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J]. Biochimicaet Biophysica Acta, 1989, 990: 87-92. [23] Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical fluorescence quenching with a new type of modulation fluorometer[J]. Photosynthesis Research, 1986, 10: 51-62 [24] Bilger W, Bjrkman O. Temperature dependence of violaxanthin deepoxidation and non-photochemical fluorescence quenching in intact leaves of Gossypium hirsutum L. and Malva parviflora L.[J]. Planta, 1991, 184: 226-234. [25] Kramer D M, Johnson G, Kiirats O, et al. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes[J]. Photosynthesis Research, 2004, 79: 209-218. [26] Demmig-Adams B, Adams III W W, Barker D H, et al. Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation[J]. Plant Physiology, 1996, 98: 253-264. [27] 张志良, 瞿伟菁. 植物生理学实验指导(第三版)[M]. 北京:高等教育出版社, 2003. [28] Kato M C, Hikosaka K, Hirotsu N, et al. The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivaion in photosystem II[J]. Plant Cell Physiology, 2003, 44: 318-325. [29] Gamon J A, Serrano L, Surfus J S. The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels[J]. Oecologia, 1997, 112: 492-501. [30] Guo J, Trotter C M. Estimating photosynthetic light-use efficiency using the photochemical reflectance index: variations among species[J]. Functional Plant Biology, 2004, 31: 255-265. [31] Peltzer D, Dreyer E, Polle A. Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei[J]. Plant Physiology and Biochemistry, 2002, 40: 141-50. [32] Zhuang L, Chen Y N. Physiological responses of three contrasting plant species to groundwater level changes in an arid environment[J]. Journal of Integrative Plant Biology, 2006, 48(5): 520-526. [33] Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Biology, 1992, 43: 83-116. [34] Foyer C H, Lelandais M, Kunert K J. Photooxidative stress in plants[J]. Physiologia Plantarum, 1994, 92: 696-717. |