[1] Lai R. World soils and the greenhouse effect[J]. Global Change Newsletter,1999, 37: 4-5. [2] 朱连奇, 朱小立, 李秀霞. 土壤有机碳研究进展[J]. 河南大学学报(自然科学版), 2006, 36(3): 72-75. [3] 杨兰芳, 蔡祖聪. 玉米生长和施氮水平对土壤有机碳更新的影响[J]. 环境科学学报, 2006, 26(2): 280-286. [4] 王发刚, 王启基, 王文颖, 等. 土壤有机碳研究进展[J]. 草业科学, 2008, 25(2): 48-54. [5] Hütsch B W, Augustin J, Merbach W. Plant rhizodepositon-an important source for carbon turnover in soils[J]. Journal of Plant Nutrition and Soil Science, 2002, 165: 397-407. [6] 刘吉利, 朱万斌, 谢光辉, 等. 能源作物柳枝稷研究进展[J]. 草业学报, 2009, 18(3): 232-240. [7] 侯新村, 范希峰, 武菊英, 等. 纤维素类能源草在京郊地区的经济效益与生态价值评价[J]. 草业学报, 2011, 20(6): 12-17. [8] 李平, 孙小龙, 韩建国, 等. 能源植物新看点—草类能源植物[J]. 中国草地学报, 2010, 32(5): 97-100. [9] 云锦凤. 低碳经济与草业发展的新机遇[J]. 中国草地学报, 2010, 32(3): 1-3. [10] King J S, Albaugh T J, Allen H L, et al. Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine[J]. New Phytologist, 2002, 164: 389-398. [11] Nadelhofer K J, Emmett B A, Gunderson P, et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests[J]. Nature, 1999, 398: 145-148. [12] Nadelhofer N J. The potential effects of nitrogen deposition on fine-root production in forest ecosystem[J]. New Phytologist, 2000, 147: 31-139. [13] 王俊波, 季志平, 白立强, 等. 刺槐人工林有机碳与根系生物量的关系[J]. 西北林学院学报, 2007, 22(4): 54-56. [14] 樊军, 郝明德. 长期轮作施肥对土壤微生物量碳氮的影响[J]. 水土保持研究, 2003, 10(1): 85-87. [15] 杨成德, 龙瑞军, 陈秀蓉, 等. 东祁连山高寒灌丛草地土壤微生物量及土壤酶季节性动态特征[J]. 草业学报, 2011, 20(6): 135-142. [16] 谢芳, 韩晓日, 杨劲峰, 等. 长期施肥对棕壤微生物量碳和水溶性有机碳的影响[J]. 农业科技与装备, 2008, 177: 10-13. [17] 周萍, 张旭辉, 潘根兴, 等. 长期不同施肥对太湖地区黄泥土总有机碳及颗粒态有机碳含量及深度分布的影响[J]. 植物营养与肥料学报, 2006, 12(6): 765-771. [18] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 56-58. [19] Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass[J]. Soil Biology & Biochemistry, 1987, 19: 703-707. [20] 杨盛, 刘艳丽, 陈光水, 等. 格氏栲天然林与人工林土壤非保护性有机C含量及分配[J]. 生态学报, 2004, 24(1): 1-8. [21] 张金波, 宋长春. 土地利用方式对土壤碳库影响的敏感性评价指标[J]. 生态环境, 2003, 12(4): 500-504. [22] 史奕, 陈欣, 杨雪莲, 等. 土壤“慢”有机碳库研究进展[J]. 生态学杂志, 2003, 22(5): 108-112. [23] Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for c saturation of soils[J]. Plant and Soil, 2002, 241: 155-176. [24] Cambardella C A, Elliott E T. Particulate soil organic matter changes across a grassland cultivation sequence[J]. Soil Science Society of America Journal, 1992, 56: 777-783. [25] Franzluebbers A J, Arshed M A. Particulate organic content and potential mineralization as affected by tillage and texture[J]. Soil Science Society of America Journal, 1997, 16: 1382-1386. [26] 董博, 郭天文, 曾骏, 等. 免耕对土壤有机碳和微生物量碳含量及作物产量的影响[J]. 甘肃农业科技, 2010, 10: 15-17, 18. [27] Thurman E M. Organic Geochemistry of Natural Waters[M]. Boston: Kluwer Academic, 1985. [28] 倪进治, 徐建民, 谢正苗. 土壤水溶性有机碳的研究进展[J]. 生态环境, 2003, 12(1): 71-75. [29] Burford J R, Bremner J M. Relationships between denitrification capacities of soils and total water soluble and readily decomposable soil organic matter[J]. Soil Biology & Biochemistry, 1975, 7: 389-394. [30] Gregorich E G, Liang B C, Drury C F, et al. Elucidation of the source and turnover of water soluble and microbial biomass carbon in agriculture soils[J]. Soil Biology & Biochemistry, 2000, 32: 581-587. [31] 孙天聪, 李世清, 邵明安, 等. 长期施肥对褐土有机碳和氮素在团聚体中分布的影响[J]. 中国农业科学, 2005, 38(9): 1841-1848. [32] 李文西, 鲁剑巍, 鲁君明, 等. 苏丹草—黑麦草轮作制中施氮量对饲草产量与土壤氮碳积累的影响[J]. 草业学报, 2011, 20(1): 55-61. [33] Liang B C, Mackenzie A F, Schnitzer M, et al. Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils[J]. Biology and Fertility of Soils, 1998, 26: 88-94. [34] Chantigny M H, Angers D A, Prevost D, et al. Dynamics of soluble organic C and C mineralization in cultivated soils with varying N fertilization[J]. Soil Biology & Biochemistry, 1999, 31: 543-550. [35] 龚伟, 颜晓元, 蔡祖聪, 等. 长期施肥对小麦—玉米作物系统土壤颗粒有机碳和氮的影响[J]. 应用生态学报, 2008, 19(11): 2375-2381. [36] 朱毅, 侯新村, 武菊英, 等. 两种沙性栽培基质下柳枝稷根系生长对施氮水平的响应[J]. 中国草地学报, 2012, 34(5): 58-64. [37] 贾伟, 周怀平, 解文艳, 等. 长期秸秆还田秋施肥对褐土微生物量碳、氮量和酶活性的影响[J]. 华北农学报, 2008, 23(2): 138-142. |