[1] Blankemeyer J, Atherton R, Friedman M. Effect of potato glycoalkaloids α-chaconine and α-solanine on sodium active transport in frog skin[J]. Journal of Agricultural and Food Chemisty, 1995, 43: 636-639. [2] Friedman M, Rayburn J, Bantle J. Structural relationships and developmental toxicity of Solanum alkaloids in the frog embryo teratogenesis assay-Xenopus[J]. Journal of Agricultural and Food Chemisty, 1992, 40: 1617-1624. [3] Valkonen J P T, Keskitalo M, Vasara T, et al. Potato glycoalkaloids: A burden or a blessing?[J]. Critical Reviews in Plant Sciences, 1996, 15: 1-20. [4] Fragoyiannis D A, McKinlay R G, D’Mello J P. Interactions of aphid herbivory and nitrogen availability on the total foliar glycoalkaloid content of potato plants[J]. Journal of Chemical Ecology, 2001, 27(9): 1749-1762. [5] Rokka V M, Xu Y S, Kankila J, et al. Identification of somatic hybrids of dihaploid Solanum tuberosum lines and S. brevidens by species specific RAPD patterns and assessment of disease resistance of the hybrids[J]. Euphytica, 1994, 80(3): 207-217. [6] Haase N U. Glycoalkaloid concentration in potato tubers related to storage and consumer offering[J]. Potato Research, 2010, 53(4): 297-307. [7] 季彦林, 王旺田, 王蒂. 不同光质对马铃薯块茎糖苷生物碱积累的诱导效应[J]. 江苏农业学报, 2010, 26(1): 40-45. [8] 牛继平, 张金文, 王旺田, 等. 马铃SGAs合成代谢途径末端SGT酶基因克隆及序列分析[J]. 草业学报, 2012, 21(3): 106-116. [9] McCue K, Allen P V, Shepherd L V T, et al. Potato glycosterol rhamnosyltransferase, the terminal step in triose side-chain biosynthesis[J]. Phytochemistry, 2007, 68: 327-334. [10] McCue K, Allen P, Shephers L. The primary in vivo steroidal alkaloid glucosyltransferase from potato[J]. Phytochemistry, 2006, 67: 1590-1597. [11] Rockhold D R, Chang S, Taylor N, et al. Structure of two Solanum bulbocastanum polyubiquitin genes and expression of their promoters in transgenic potatoes[J]. American Journal of Potato Research, 2008, 85: 219-226. [12] 安惠惠, 马晖玲, 李坚, 等. 农杆菌介导的Lyz-GFP基因对匍匐翦股颖Penn A-1转化和表达的研究[J]. 草业学报, 2012, 21(3): 141-148. [13] David G G, Tony E G, Janice N, et al. Measurement of DNA copy number at microsatellite loci using quantitative PCR analysis[J]. Cancer Research, 2000, 60: 5405-5409. [14] 张宁, 王蒂. 农杆菌介导的烟草高效遗传转化体系研究[J]. 甘肃农业科技, 2004, 9: 11-13. [15] 张宁. 应用甜菜碱醛脱氢酶基因工程提高马铃薯抗逆性的研究[D]. 兰州: 甘肃农业大学, 2004. [16] 段光明, 刘加, 李霞. 马铃薯糖苷生物碱的生物学作用及开发利用[J]. 资源开发与市场, 1995, 11(2): 61-65. [17] Keddie J S, Hubner G, Slocombe S P, et al. Cloning and characterisation of an oleosin gene from Brassica napus[J]. Plant Molecular Biology, 1992, 19: 443-453. [18] Shirsat A, Wilford N, Croy R, et al. Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco[J]. Molecular & General Genetics, 1989, 215: 326-331. [19] Reyes J C, Muro-Pastor M I, Florencio F J. The GATA family of transcription factors in Arabidopsis and rice[J]. Plant Physiology, 2004, 134(4): 1718-1732. [20] Xie Z, Allen E, Wilken A. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the USA, 2005, 102(36): 12984-12989. [21] Daraselia N D, Tarchevskaya S, Narita J O. The promoter for tomato 3-hydroxy-3-methylglutaryl coenzyme A reductase gene 2 has unusual regulatory elements that direct high-level expression[J]. Plant Physiology, 1996, 112: 727-733. [22] Nakashima K, Fujita Y, Katsura K, et al. Transcriptional regulation of ABI3-and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis[J]. Plant Molecular Biology, 2006, 60: 51-68. [23] Elmayan T, Tepfer M. Evaluation in tobacco of theorgan specificity and strength of the rolD promoter, domain A of the 35S promoter and the 35S2 promoter[J]. Transgenic Research, 1995, 4: 388-396. [24] Xu X, Chen C, Fan B, et al. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors[J]. Plant Cell, 2006, 18: 1310-1326. [25] Luo H, Song F, Goodman R M, et al. Up-regulation of OsBIHDI, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses[J]. Plant Biology, 2005, 7(5): 459-468. [26] Diaz-De-Leon F, Klotz K L, Lagrimini M. Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene[J]. Plant Physiology, 1993, 101: 1117-1118. [27] Abe H, Tatsuno I, Tobe T, et al. Bicarbonate ion stimulates the expression of locus of enterocyte effacement-encoded genes in enterohemorrhagic Escherichia coli O157:H7[J]. Infection and Immunity, 2002, 70(7): 3500-3509. [28] Abe H, Urao T, Ito T, et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell, 2003, 15: 63-78. [29] Urao T, Yamaguchi-Shinozaki K, Urao S, et al. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence[J]. Plant Cell, 1993, 5: 1529-1539. [30] Gubler F, Jacobsen J V. Gibberellin-responsive elements in the promoter of a barley high-pI alpha-amylase gene[J]. Plant Cell, 1992, 4(11): 1435-1441. [31] Morita A, Umemura T, Kuroyanagi M, et al. Functional dissection of a sugar-repressed α-amylase gene (Ramy1A) promoter in rice embryos[J]. Febs Lett, 1998, 423: 81-85. [32] Tatematsu K, Ward S, Leyser O, et al. Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis[J]. Plant Physiology, 2005, 138(2): 757-766. [33] Terzaghi W B, Cashmore A R. Light-regulated transcription[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46: 445-474. [34] Thiesen H J, Bach C. Target Detection Assay (TDA): a versatile procedure to determine DNA binding sites as demonstrated on SP1 protein[J]. Nucleic Acids Research, 1990, 18(11): 3203-3209. [35] Logemann E, Parniske M, Hahlbrock K. Modes of expression and common structural features of the complete phenylalanine ammonia-lyase gene family in parsley[J]. Proceedings of the National Academy of Sciences of the USA, 1995, 92(13): 5905-5909. [36] Thum K E, Kim M, Christopher D A, et al. Cryptochrome 1, cryptochrome 2, and phytochrome a co-activate the chloroplast psbD blue light-responsive promoter[J]. Plant Cell, 2001, 13(12): 2747-2760. [37] Chan C S, Guo L, Shih M C. Promoter analysis of the nuclear gene encoding the chloroplast glyceraldehyde-3-phosphate dehydrogenase B subunit of Arabidopsis thaliana[J]. Plant Molecular Biology, 2001, 46 (2), 131-141. [38] 邢智峰, 张安世, 徐存栓, 等. 毛白杨4CL基因启动子的克隆及初步功能分析[J]. 河南师范大学学报, 2007, 35: 142-145. [39] 陈婷婷, 杨青川, 丁旺, 等. 紫花苜蓿WRKY转录因子基因的克隆与亚细胞定位[J]. 草业学报, 2012, 21(4): 159-167. [40] Millar A, Kay S. Integration of circadian and photo transduction pathways in the network controlling CAB gene transcription in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the USA, 1996, 93: 15491-15496. [41] Terzaghi W, Cashmore A. Light-regulated transcription[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1995, 46: 445-474. [42] Degenhardt J, Tobin E. A DNA binding activity for one of two closely defined phytochrome regulatory elements in an Lhcb promoter is more abundant in etiolated than in green plants[J]. Plant Cell, 1996, 8: 31-41. |