Acta Prataculturae Sinica ›› 2014, Vol. 23 ›› Issue (4): 343-350.DOI: 10.11686/cyxb20140441
• Orginal Article • Previous Articles Next Articles
WANG Jie,LI Gang,XIU Wei-ming,ZHAO Jian-ning,WANG Hui,YANG Dian-lin
Received:
2013-08-19
Online:
2014-08-20
Published:
2014-08-20
CLC Number:
WANG Jie,LI Gang,XIU Wei-ming,ZHAO Jian-ning,WANG Hui,YANG Dian-lin. Responses of soil microbial functional diversity to nitrogen and water input in Stipa baicalensiss teppe, Inner Mongolia, Northern China[J]. Acta Prataculturae Sinica, 2014, 23(4): 343-350.
Reference:[1]Zhang L, Huang J H, Bai Y F, et al. Effects of nitrogen addition on net nitrogen mineralization in Leymus chineseis grassland, Inner Mongolia, China[J]. Chinese Journal of Plant Ecology, 2009, 33(3): 563-569. [2]Zhou X B, Zhang Y M, Downing A. Non linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, northwestern China[J]. Soil Biology and Biochemistry, 2012, 47: 67-77.[3]Zhang N L, Guo J X, Wang X Y, et al. Soil microbial feedbacks to climate warming and atmospheric N deposition[J]. Journal of Plant Ecology(Chinese Version), 2007, 31(2): 252-261.[4]Wilkinson S C, Anderson J M, Scardelis S P, et al. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress[J]. Soil Biology and Biochemistry, 2002, 34: 189-200.[5]Long S Y, Bao Y J, Li Z H, et al. The carbon contents and the relationship with the calorific values of 67 plant species in Inner Mongolia grasslands[J]. Acta Prataculturae Sinica, 2013, 22(1): 112-119.[6]Li Y Z, Fan J W, Zhang L X, et al. The impact of different land use and management on community composition, species diversity and productivity in a typical temperate grassland[J]. Acta Prataculturae Sinica, 2013, 22(1): 1-9.[7]Zhao S, Zhang J N, Lai X, et al. Analysis of microbial biomass C.N and soil microbial community structure of stipa steppes using PLFA at grazing and fenced in Inner Mongolia,China[J]. Journal of Agro-Environment Science, 2011, 30(6): 1126-1134.[8]Wendu R L, Li G, Yang D L, et al. nifH gene diversity and community structure of soil nitrogen-fixing bacteria in Hulunbeier grassland,Inner Mongolia[J]. Chinese Journal of Ecology, 2011, 30(4): 790-797.[9]Li Y J, Li G, Song X L, et al. Effect of rest-grazing on soil microbial community functional diversity in Stipa baicalensis steppe[J]. Acta Prataculturae Sinica, 2013, 22(6): 21-30.[10]Chapin F S, Walker B H, Hobbs R J. Biotic control over the functioning of ecosystems[J]. Science, 1997, 277: 500-504.[11]Copley J. Ecology goes underground[J]. Nature, 2000, 406: 452-454.[12]Yang D L, Han G D, Hu Y G, et al. Effects of grazing intensity on plant diversity and aboveground biomass of Stipa baicalensis grassland[J]. Chinese Journal of Ecology, 2006, 25(12): 1470-1475.[13]Bao S D. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000: 30-83.[14]Zhang H F, Li G, Song X L, et al. Functional diversityofsoil microbial communitiesin steppeinInnerMongoliaasaffectedbydifferent landusepatterns[J]. Chinese Journal of Ecology, 2012, 31(5): 1143-1149.[15]Sun F X, Zhang W H, Xu M G, et al. Effects of long-term fertilization on microbial biomass carbon and nitrogen and on carbon source utilization of microbes in a red soil[J]. Chinese Journal of Applied Ecology, 2010, 21(11): 2792-2798.[16]Kong W D, Liu K X, Liao Z W. Effects of different organic materials and their composting levels on soil microbial community[J]. Chinese Journal of Applied Ecology, 2004, 15(3): 487-492.[17]Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole carbon source utilization[J]. Applied and Environmental Microbiology, 1991, 57: 2351-2359.[18]Wang G H, Liu J J, Qi X N, et al. Effects of fertilization on bacterial community structure and function in a black soil of Dehui region estimated by Biolog and PCR-DGGE methods[J]. Acta Ecologica Sinica, 2008, 28(1): 220-226.[19]Schutter M, Dick R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates[J]. Soil Biology and Biochemistry, 2001, 33: 1481-1491.[20]Zhang Y Y, Qu L Y, Chen L X. An amendment on information extraction of biolog ecoPlate(TM)[J]. Microbiology, 2009, 36(7): 1083-1091.[21]Qi S, Zhao X R, Zheng H X, et al. Changes of soil biodiversity in Inner Mongolia steppe after 5 years of N and P fertilizer applications[J]. Acta Ecologica Sinica, 2010, 30(20): 5518-5526.[22]Hou X J, Wang J K, Li S P. Effects of different fertilization and plastic-mulching on functional diversity of soil microbial community[J]. Acta Ecologica Sinica, 2007, 27(2): 655-661.[23]Cederlunda H, Thierfelder T, Stenstr ma J. Functional microbial diversity of the railway track bed[J]. Science of the Total Environment, 2008, 397: 205-214.[24]Chen M M, Zhu Y G, Su Y H, et al. Effects of soil moisture and plant interactions on the soil microbial community structure[J]. European Journal of Soil Biology, 2007, 43: 31-38.[25]Sardans J, Pe uelas J, Estiarte M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland[J]. Applied Soil Ecology, 2008, 39: 223-235.[26]Zhong W H, Cai Z C. Methods for studying soil microbial diversity[J]. Chinese Journal of Applied Ecology, 2004, 15(5): 899-904.[27]Vanegas J, Landazabal G, Melgarejo L M, et al. Structural and functional characterization of the microbial communities associated with the upland and irrigated rice rhizospheres in a neotropical Colombian savannah[J]. European Journal of Soil Biology, 2013, 55: 1-8.[28]Dalmonech D, Lagomarsino A, Moscatelli M C, et al. Microbial performance under increasing nitrogen availability in a Mediterranean forest soil[J]. Soil Biology and Biochemistry, 2010, 42: 1596-1606.[29]Anthony G, Donnell O, Seasman M, et al. Plants and fertilizers as drivers of changes in microbial community structure and function in soils[J]. Plant and Soil, 2001, 232: 135-145.[30]Kemmitt S J, Wright D, Goulding K W T, et al. pH regulation of carbon and nitrogen dynamics in two agricultural soils[J]. Soil Biology and Biochemistry, 2006, 38: 898-911.[31]Luo X Q, Hao X H, Chen T, et al. Effects of long-term different fertilization on microbial community functional diversity in paddy soil[J]. Acta Ecologica Sinica, 2009, 29(2): 740-748.[32]Konopka A, Oliver L, Turco R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology[J]. Microbial Ecology, 1998, 35: 103-115. 参考文献:[1]张璐, 黄建辉, 白永飞, 等. 氮素添加对内蒙古羊草草原净氮矿化的影响[J]. 植物生态学报, 2009, 33(3): 563-569. [2]Zhou X B, Zhang Y M, Downing A. Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, northwestern China[J]. Soil Biology and Biochemistry, 2012, 47: 67-77.[3]张乃莉, 郭继勋, 王晓宇, 等. 土壤微生物对气候变暖和大气N 沉降的响应[J]. 植物生态学报, 2007, 31(2): 252-261.[4]Wilkinson S C, Anderson J M, Scardelis S P, et al. PLFA profiles of microbial communities in decomposing conifer litters subject to moisture stress[J]. Soil Biology and Biochemistry, 2002, 34: 189-200.[5]龙世友, 鲍雅静, 李政海, 等. 内蒙古草原67种植物碳含量分析及与热值的关系研究[J]. 草业学报, 2013, 22(1): 112-119.[6]李愈哲, 樊江文, 张良侠, 等. 不同土地利用方式对典型温性草原群落物种组成和多样性以及生产力的影响[J]. 草业学报, 2013, 22(1): 1-9.[7]赵帅, 张静妮, 赖欣, 等. 放牧与围栏内蒙古针茅草原土壤微生物生物量碳、氮变化及微生物群落结构PLFA 分析[J]. 农业环境科学学报, 2011, 30(6): 1126-1134.[8]文都日乐, 李刚, 杨殿林, 等. 呼伦贝尔草原土壤固氮微生物nifH 基因多样性与群落结构[J]. 生态学杂志, 2011, 30(4): 790-797.[9]李玉洁, 李刚, 宋晓龙, 等. 休牧对贝加尔针茅草原土壤微生物群落功能多样性的影响[J]. 草业学报, 2013, 22(6): 21-30.[10]Chapin F S, Walker B H, Hobbs R J. Biotic control over the functioning of ecosystems[J]. Science, 1997, 277: 500-504.[11]Copley J. Ecology goes underground[J]. Nature, 2000, 406: 452-454.[12]杨殿林, 韩国栋, 胡跃高, 等. 放牧对贝加尔针茅草原群落植物多样性和生产力的影响[J]. 生态学杂志, 2006, 25(12): 1470-1475.[13]鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-83.[14]张海芳, 李刚, 宋晓龙, 等. 内蒙古贝加尔针茅草原不同利用方式土壤微生物功能多样性变化[J]. 生态学杂志, 2012, 31(5):1143-1149.[15]孙凤霞, 张伟华, 徐明岗, 等. 长期施肥对红壤微生物生物量碳氮和微生物碳源利用的影响[J]. 应用生态学报, 2010, 21(11):2792-2798.[16]孔维栋, 刘可星, 廖宗文. 有机物料种类及腐熟水平对土壤微生物群落的影响[J]. 应用生态学报, 2004, 15(3): 487-492.[17]Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole carbon source utilization[J]. Applied and Environmental Microbiology, 1991, 57: 2351-2359.[18]王光华, 刘俊杰, 齐晓宁, 等. Biolog和PCR-DGGE技术解析施肥对德惠黑土细菌群落结构和功能的影响[J]. 生态学报, 2008, 28(1): 220-226.[19]Schutter M, Dick R. Shifts in substrate utilization potential and structure of soil microbial communities in response to carbon substrates[J]. Soil Biology and Biochemistry, 2001, 33: 1481-1491.[20]张燕燕, 曲来叶, 陈利顶. Biolog EcoPlateTM实验信息提取方法改进[J]. 微生物学通报, 2009, 36(7): 1083-1091.[21]齐莎, 赵小蓉, 郑海霞, 等. 内蒙古典型草原连续5年施用氮磷肥土壤生物多样性的变化[J]. 生态学报, 2010, 30(20): 5518-5526.[22]侯晓杰, 汪景宽, 李世朋. 不同施肥处理与地膜覆盖对土壤微生物群落功能多样性的影响[J]. 生态学报, 2007, 27(2): 655-661.[23]Cederlunda H, Thierfelder T, Stenstrma J. Functional microbial diversity of the railway track bed[J]. Science of the Total Environment, 2008, 397: 205-214.[24]Chen M M, Zhu Y G, Su Y H, et al. Effects of soil moisture and plant interactions on the soil microbial community structure[J]. European Journal of Soil Biology, 2007, 43: 31-38.[25]Sardans J, Peuelas J, Estiarte M. Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland[J]. Applied Soil Ecology, 2008, 39: 223-235.[26]钟文辉, 蔡祖聪. 土壤微生物多样性研究方法[J]. 应用生态学报, 2004, 15(5): 899-904.[27]Vanegas J, Landazabal G, Melgarejo L M, et al. Structural and functional characterization of the microbial communities associated with the upland and irrigated rice rhizospheres in a neotropical Colombian savannah[J]. European Journal of Soil Biology, 2013, 55: 1-8.[28]Dalmonech D, Lagomarsino A, Moscatelli M C, et al. Microbial performance under increasing nitrogen availability in a Mediterranean forest soil[J]. Soil Biology and Biochemistry, 2010, 42: 1596-1606.[29]Anthony G, Donnell O, Seasman M, et al. Plants and fertilizers as drivers of changes in microbial community structure and function in soils[J]. Plant and Soil, 2001, 232: 135-145.[30]Kemmitt S J, Wright D, Goulding K W T, et al. pH regulation of carbon and nitrogen dynamics in two agricultural soils[J]. Soil Biology and Biochemistry, 2006, 38: 898-911.[31]罗希茜, 郝晓晖, 陈涛, 等. 长期不同施肥对稻田土壤微生物群落功能多样性的影响[J]. 生态学报, 2009, 29(2): 740-748.[32]Konopka A, Oliver L, Turco R F. The use of carbon substrate utilization patterns in environmental and ecological microbiology[J]. Microbial Ecology, 1998, 35: 103-115. |
[1] | CHAI Hua,FANG Jiang-ping,WEN Ding,LI Jie,HE Nian-peng. Effect of sampling method on the estimation of soil carbon and nitrogen storages in thicketed semiarid grasslands, Inner Mongolia [J]. Acta Prataculturae Sinica, 2014, 23(6): 28-35. |
[2] | XU Sha,GONG Ji-rui,ZHANG Zi-yu,LIU Min,WANG Yi-hui,LUO Qin-pu. The ecological stoichiometry of dominant species in different land uses type of grassland [J]. Acta Prataculturae Sinica, 2014, 23(6): 45-53. |
[3] | LI Jin-hui,LU Xin,ZHOU Zhi-yu,ZHAO Ping,JIN Qian,ZHOU Yuan-yuan. Phosphorus contents in the rhizosphere and bulk soil under Amorpha fruticosa established in different years [J]. Acta Prataculturae Sinica, 2014, 23(6): 61-68. |
[4] | CHEN Ji,CAO Jun-ji,WEI Yong-lin,LIU Ji-hong,MA Fu-lin,CHEN Di-chao,FENG Jia-yu,XIA Yao,CEN Yan. Effect of grazing exclusion on soil respiration during the dormant season in alpine meadow grassland ecosystems on the northern shore of Qinghai Lake, China [J]. Acta Prataculturae Sinica, 2014, 23(6): 78-86. |
[5] | YAN Zhong-qing,QI Yu-chun,DONG Yun-she,PENG Qin,SUN Liang-jie,JIA Jun-qiang,CAO Cong-cong,GUO Shu-fang,HE Yun-long. Nitrogen cycling in grassland ecosystems in response to climate change and human activities [J]. Acta Prataculturae Sinica, 2014, 23(6): 279-292. |
[6] | ZHANG Zhi-nan,WU Gao-lin,WANG Dong,DENG Lei,HAO Hong-min,YANG Zheng,SHANGGUAN Zhou-ping. Plant community structure and soil moisture in the semi-arid natural grassland of the Loess Plateau [J]. Acta Prataculturae Sinica, 2014, 23(6): 313-319. |
[7] | WANG Chun-yan,ZHANG Jin-jing,LV Yu-liang,WANG Li,HE Nian-peng. Effects of long-term grazing exclusion on soil organic carbon fractions in the grasslands of Inner Mongolia [J]. Acta Prataculturae Sinica, 2014, 23(5): 31-39. |
[8] | YU Wen-chao,SONG Xiao-long,XIU Wei-ming,ZHANG Gui-long,ZHAO Jian-ning,YANG Dian-lin. Effects of additional nitrogen on litter decomposition in Stipa baicalensis grassland [J]. Acta Prataculturae Sinica, 2014, 23(5): 49-60. |
[9] | LU Hu,LI Xian-gang,YAO Tuo,PU Xiao-peng. Characteristics of vegetation and soil microorganisms of molehill grassland in an ecologically vulnerable alpine region [J]. Acta Prataculturae Sinica, 2014, 23(5): 214-222. |
[10] | YANG Yang,LIU Bing-ru,SONG Nai-ping,YANG Xin-guo. The effect of planted Caragana density on the spatial distribution of soil nutrients in desert steppe [J]. Acta Prataculturae Sinica, 2014, 23(5): 107-115. |
[11] | GAO Hai-ning,MA Guo-tai,LI Cai-xia,CHEN Yong,SONG Tao,ZHANG Yong,JIAO Yang. Effects of a microorganism on grass seedling physiological and biochemical characteristics when grown in Cr(Ⅵ) polluted soil [J]. Acta Prataculturae Sinica, 2014, 23(4): 189-194. |
[12] | MA Lin-ya,CUI Xia,FENG Qi-sheng,LIANG Tian-gang. Dynamic changes of grassland vegetation coverage from 2001 to 2011 in Gannan Prefecture [J]. Acta Prataculturae Sinica, 2014, 23(4): 1-9. |
[13] | WANG Chong,LIN Hui-long,HE Lan,CAO Ao-cheng. Research on responses of Eupatorium adenophorum’s potential distribution to climate change [J]. Acta Prataculturae Sinica, 2014, 23(4): 20-30. |
[14] | DENG Shao-hong,LIN Ming-yue,LI Fu-sheng,SU Yi-rong,LIU Kun-ping. Effects of fertilization on soil carbon pool management index and enzyme activities in pasture grown soil of the Karst region [J]. Acta Prataculturae Sinica, 2014, 23(4): 262-268. |
[15] | WU Qiang-sheng,YUAN Fang-ying,FEI Yong-jun,LI Li,HUANG Yong-ming. Effects of arbuscular mycorrhizal fungi on aggregate stability, GRSP, and carbohydrates of white clover [J]. Acta Prataculturae Sinica, 2014, 23(4): 269-275. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||