[1] IPCC. Summary for Policy makers of Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2007. [2] Galloway J N, Aber J D, Erisman J W, et al . The nitrogen cascade. Bio-Science, 2003, 53: 341-356. [3] Kaiser J. The other global pollutant: nitrogen proves tough to curb. Science, 2001, 294: 1268-1269. [4] Moffat A S. Global nitrogen overload problem grows critical. Science, 1989, 244: 776-783. [5] Galloway J N, Levy H, Kasibhatla P S. Year 2020: consequence of population growth and development on deposition of oxidized nitrogen. Ambio, 1994, 23: 120-123. [6] Pamela M, Kathleen A L, Sharon J H. The globalization of nitrogen deposition: Consequences for terrestrial ecosystem. Ambio, 2002, 31(2): 113-121. [7] Bai W. The Effects of Global Climate Changes of Alpine Grassland Ecosystem and its Carbon Emission in Head-water Region of the Yongtze River[D]. Lanzhou: Lanzhou University, 2010. [8] Cheng G D, Li P J, Zhang X S, et al . Impacts of Climate Change on Glaciers, Permafrost and Snow Cover in China[M]. Lanzhou: Gansu Culture Press, 1997: 22-56. [9] Li L, Chen X G, Wang Z Y, et al . Climate change and its regional differences over the Tibetan plateau. Advances in Climate Change Research, 2010, 6(3): 181-186. [10] Ding Y H, Ren G Y, Shi G Y, et al . National assessment report of climate change (I): Climate change in China and its future trend. Advances in Climate Change Research, 2006, 2(1): 3-8. [11] Lv C, Tian H. Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research: Atmospheres (1984-2012), 2007, 112: D22S05, doi:10.1029/2006JD007990. [12] Zheng X H, Fu C B, Xu X K, et al . The Asian nitrogen cycle case study. Ambio, 2002, 31: 79-87. [13] Galloway J N, Dentener J F, Capone G D, et al . Nitrogen cycles: past, resent and future. Biogeochemistry, 2004, 70: 153-226. [14] Yang Y H, Fang J Y, Tang Y H, et al . Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 2008, 14: 1592-1599. [15] Li Y N, Wang Q J, Zhao X Q, et al . The influence of climatic warming on the climatic potential productivity of alpine meadow. Acta Agrestia Sinica, 2000, 18(1): 23-29. [16] Zhang J H, Li Y N. The research on effect of climate change on vegetation productivity in Qinghai province. Journal of Arid Land Resources and Environment, 2008, 22(2): 97-102. [17] Li Y N, Wang X Q, Gu S, et al . Integrated monitoring of alpine vegetation types and its primary production. Acta Geographica Sinica, 2004, 59(1): 40-48. [18] Yang K, Lin E D, Gao Q Z, et al . Simulation of climate change impacts on grassland productivity in Northern Tibet. Chinese Journal of Ecology, 2010, 29(7): 1469-1476. [19] Wang G X, Qian J, Cheng G D, et al . Soil organic carbon pool of grassland soils on the Qinghai Tibetan Plateau and its global implication. The Science of the Total Environment, 2002, 291: 207-217. [20] Zeng Y N, Feng D, Cao G C, et al . The soil organic carbon storage and its spatial distribution of alpine grassland in the source region of the Yellow river. Acta Geographica Sinica, 2004, 59(4): 497-504. [21] Tao Z, Shen C D, Gao Q Z, et al . Soil organic carbon storage and vertical distribution of alpine meadow on the Tibetan plateau. Acta Geographica Sinica, 2006, 61(7): 720-728. [22] Zhang Y Q, Tang Y H, Jiang J. The dynamics characteristics of soil organic carbon of grassland on Qinghai Tibet Plateau, Science in China Ser. D Earth Sciences, 2006, 36(12): 1140-1147. [23] Toshiyuki O, Mitsuru H, Zhan X Z, et al . Soil organic carbon pools in alpine to nival zones along an altitudinal (4400-5300 m) on the Tibetan Plateau. Polar Science, 2008, 2: 277-285. [24] Li D, Huang Y, Wu Q, et al . Modeling dynamics of soil organic carbon in an alpine meadow ecosystem on the Qinghai-Tibetan plateau using CENTURY model. Acta Prataculturae Sinica, 2010, 19(2): 160-168. [25] Hu Q W, Cao G M, Wu Q, et al . Comparative study on CO 2 emissions from different types of alpine meadow during grass exuberance period. Journal of Georaphical Science, 2004, 14(2): 167-176. [26] Li D, Cao G M, Hu Q W, et al . A primary study on CO 2 emission from alpine Potentilla fruticosa scrub meadow ecosystem. Acta Agrestia Sinica, 2005, 13(2): 144-148. [27] Li D, Cao G M, Wu Q, et al . The seasonal change rule of CO 2 release rate in alpine Potentilla fruticosa shrub meadow ecosystem. Pratacultural Science, 2005, 22(5): 4-10. [28] Wu Q, Hu Q W, Cao G M, et al . A primary study on CO 2 emission from soil-plant systems of Kobresia humilis meadow. Resources Science, 2005, 27(2): 96-101. [29] Zhao L, Xu S X, Li Y N, et al . Relations between carbon dioxide fluxes and environmental factors of Kobresia humilis meadows and Potentilla fruticosa meadows. Acta Botanica Boreali Occidentalia Sinica, 2006, 26(1): 133-142. [30] Hu Q W, Wu Q, Cao G M, et al . Growing season ecosystem respirations and associated component fluxes in two alpine meadows on the Tibetan Plateau. Journal of Integrative Plant Biology, 2008, 50(3): 271-279. [31] Zhu T H, Cheng S L, Fang H J, et al . Early responses of soil CO 2 emission to simulating atmospheric nitrogen deposition in an alpine meadow on the Qinghai Tibetan Plateau. Acta Ecologica Sinica, 2011, 31(10): 2687-2696. [32] Wu Q, Hu Q W, Cao G M, et al . CO 2 emission from an alpine Kobresia humilis meadow in winters. Acta Ecologica Sinica, 2012, 31(18): 5107-5122. [33] Parton W J, Schimel, D S, Cole C V, et al . Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society America Journal, 1987, 51: 1173-1179. [34] Smith P, Smith J U, Powlson D S, et al . A comparison of the performance of nine soil organic matter models using datasets from seven longterm experiments. Geoderma, 1997, (81): 153-225. [35] Jenkinson D S, Rayner J H. The turnover of organic matter in some of the Rothamsted classical experiments. Soil Science, 1977, 123: 298-305. [36] Zhou X M. Kobresia Meadow in China[M]. Beijing: Science Press, 2001. [37] Lv X M, Zheng D. Impacts of global change on the alpine meadow ecosystem in the source region of the Yangtze River. Resources and Environment in the Yangtze Basin, 2006, 15(5): 603-607. [38] Raich J W, Tufekciogul A. Vegetation and soil respiration: correlations and controls. Biogeochemistry, 2000, 48(1): 71-90. [39] Qi Y, Xu M, Wu J G. Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget: nonlinearity begets surprises. Ecological Modelling, 2002, 153(1/2): 131-142. [40] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464: 579-582. [41] Cao M K, Prince S D, Li K R, et al . Response of terrestrial carbon uptake to climate interannual variability in China. Global Change Biology, 2003, 9(4): 536-546. [42] Rustad L E, Campbell J L, Marion G M, et al . A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001, 126: 543-562. [43] Luo Y Q, Wan S Q, Hui D F, et al . Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 2001, 413: 622-624. [44] Lisji J, Nissinen A, Erhard M, et al . Climatic effects on litter decomposition from arctic tundra to tropic rain forest. Global Change Biology, 2003, 9(4): 575-584. [45] Melillo J M, Steudler P A, Aber J D, et al . Soil warming and carbon-cycle feedbacks to the climate system. Science, 2002, 298(13): 2173-2175. [46] Tjoelker M G, Oleksyn J, Reich P B. Acclimation of respiration to temperature and CO 2 in seedlings of boreal tree species in relation to plant size and relative growth rate. Global Change Biology, 1999, 5(4): 679-691. [47] Li H J. Studies on Soil Respiration and its Relations to Environmental Factors in Different Ecosystems[D]. Taiyuan: Shanxi University, 2008. [48] Flanagan L B, Johnson B G. Interacting effects of temperature, soil moisture and plant biomass production on ecosystems respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 2005, 130(3-4): 237-253. [49] Li Q, Xue H X, Wang Y L, et al . The preliminary study on the impact of soil temperature and moisture on carbon flux over Stipa krylovii ecosystem, Journal of Agro-Environment Science, 2011, 30(3): 605-610. [50] Dong Y S, Qi Y C, Liu J Y, et al . The soil respiration flux variation in different rainfall intensity of four kinds of grassland. Chinese Science Bulletin, 2005, 50(5): 473-480. [51] Bouma T J, Bryla D R. On the assessment of root and soil respiration for soils of different textures: Interactions with soil moisture contents and soil CO 2 concentrations. Plant and Soil, 2000, 227(1-2): 215-221. [52] Silvola J, Alm J, Ahlholm U. The effect of plant roots on CO 2 release from peat soil. Suo, 1992, 43: 259-262. [53] Kucera C L, Kirkham D R. Soil respiration studies in tall-grass prairie in Missouri. Ecology, 1971, 52(5): 912-915. [54] Upadhyaya S D, Singh V P. Microbial turnover of organic matter in a tropical grassland soil. Pedobiologia, 1981, 21(2): 100-109. [55] Coleman D C. Soil carbon balance in a successional grassland. Oikos, 1973, 24: 195-199. [56] Xie W, Chen S T, Hu Z H. Factors influencing variability in soil heterotrophic respiration from terrestrial ecosystem in China. Environment Science, 2014, 35(1): 334-340. [57] Leirós M C, Trasar-Cepeda C, Gil-Sotres F. Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biology and Biochemistry, 1999, 31(3): 327-335. [58] Yu W C, Song X L, Xiu W M, et al . Effects of additional nitrogen on litter decomposition in Stipa baicalensis grassland. Acta Prataculturae Sinica, 2014, 23(5): 49-60. [59] Cao C C, Qi Y C, Dong Y S, et al . Effects of nitrogen deposition on critical fractions of soil organic carbon in terrestrial ecosystems. Acta Prataculturae Sinica, 2014, 23(2): 323-332. [60] Bowden R D, Davidson E, Savage K, et al . Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecology and Management, 2004, 196: 43-56. [61] Olsson P, Linder S, Giesler R, et al . Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Global Change Biology, 2005, 11(10): 1745-1763. [62] Jia B R, Zhou G S, Wang F Y, et al . Affecting factors of soil microorganism and root respiration. Chinese Journal of Applied Ecology, 2005, 16(8): 1547-1552. [63] Emmett B A. The impact of nitrogen on forest soils and feedbacks on tree growth. Water, Air and Soil Pollution, 1999, 116: 65-74. [7] 白炜. 长江源区高寒草地生态系统变化及其碳排放对气候变化的响应[D]. 兰州: 兰州大学, 2010. [8] 程国栋, 李培基, 张祥松, 等. 气候变化对中国积雪、冰川和冻土的影响评价[M]. 兰州: 甘肃文化出版社, 1997: 22-56. [9] 李林, 陈晓光, 王振宇, 等. 青藏高原区域气候变化及其差异性研究. 气候变化研究进展, 2010, 6(3): 181-186. [10] 丁一汇, 任国玉, 石广玉, 等. 气候变化国家评估报告(Ⅰ): 中国气候变化的历史和未来趋势. 气候变化研究进展, 2006, 2(1): 3-8. [15] 李英年, 王启基, 赵新全. 气候变暖对高寒草甸气候生产潜力的影响. 草地学报, 2000, 18(1): 23-29. [16] 张景华, 李英年. 青海气候变化趋势及对植被生产力影响的研究. 干旱区资源与环境, 2008, 22(2): 97-102. [17] 李英年, 王学勤, 古松, 等. 高寒植被类型及其植被生产力的监测. 地理学报, 2004, 59(1): 40-48. [18] 杨凯, 林而达, 高清竹, 等. 气候变化对藏北地区草地生产力的影响模拟. 生态学杂志, 2010, 29(7): 1469-1476. [20] 曾永年, 冯东, 曹广超, 等. 黄河源区高寒草地土壤有机碳储量及分布特征. 地理学报, 2004, 59(4): 497-504. [21] 陶贞, 沈承德, 高全洲, 等. 高寒草甸土壤有机碳储量及其垂直分布特征. 地理学报, 2006, 61(7): 720-728. [22] 张永强, 唐艳鸿, 姜杰. 青藏高原草地生态系统土壤有机碳动态特征. 中国科学D 辑: 地球科学, 2006, 36(12): 1140-1147. [24] 李东, 黄耀, 吴琴, 等. 青藏高原高寒草甸生态系统土壤有机碳动态模拟研究. 草业学报, 2010, 19(2): 160-168. [26] 李东, 曹广民, 胡启武, 等. 高寒灌丛草甸生态系统CO 2 释放的初步研究. 草地学报, 2005, 13(2): 144-148. [27] 李东, 曹广民, 吴琴, 等. 海北高寒灌丛草甸生态系统CO 2 释放速率的季节变化规律. 草业科学, 2005, 22(5): 4-10. [28] 吴琴, 胡启武, 曹广民, 等. 矮嵩草草甸植被-土壤系统CO 2 的释放特征. 资源科学, 2005, 27(2): 96-101. [29] 赵亮, 徐世晓, 李英年, 等. 青藏高原矮嵩草草甸和金露梅灌丛草甸CO 2 通量变化与环境因子的关系. 西北植物学报, 2006, 26(1): 0133-0142. [31] 朱天鸿, 程淑兰, 方华军, 等. 青藏高原高寒草甸土壤CO 2 排放对模拟氮沉降的早期响应. 生态学报, 2011, 31(10): 2687-2696. [32] 吴琴, 胡启武, 曹广民, 等. 矮嵩草草甸冬季CO 2 的释放特征. 生态学报, 2012, 31(18): 5107-5122. [36] 周兴民. 中国嵩草草甸[M]. 北京: 科学出版社: 2001. [37] 吕新苗, 郑度. 气候变化对长江源地区高寒草甸生态系统的影响. 长江流域资源与环境, 2006, 15(5): 603-607. [47] 李洪建. 不同生态系统土壤呼吸与环境因子的关系研究[D]. 太原: 山西大学, 2008. [49] 李琪, 薛红喜, 王云龙, 等. 土壤温度和水分对克氏针茅草原生态系统碳通量的影响初探. 农业环境科学学报, 2011, 30(3): 605-610. [50] 董云社, 齐玉春, 刘纪远, 等. 不同降水强度4种草地群落土壤呼吸通量变化特征. 科学通报, 2005, 50(5):473-480. [56] 谢薇, 陈书涛, 胡正华. 中国陆地生态系统土壤异养呼吸变异的影响因素. 环境科学, 2014, 35(1): 334-340. [58] 于雯超, 宋晓龙, 修伟明, 等. 氮素添加对贝加尔针茅草原凋落物分解的影响. 草业学报, 2014, 23(5): 49-60. [59] 曹丛丛, 齐玉春, 董云社, 等. 氮沉降对陆地生态系统关键有机碳组分的影响. 草业学报, 2014, 23(2): 323-332. [62] 贾丙瑞, 周广胜, 王风玉, 等. 土壤微生物与根系呼吸作用影响因子分析. 应用生态学报, 2005, 16(8): 1547-1552. |