[1] Radcliffe B C, Hynd P I, Benevenga N J, et al . Effects of cysteine ethyl ester supplements on wool growth tate. Australian Journal of Agricultural Resear, 1985, 36: 709-715. [2] Reis P J. Effects of amino acids on the growth and properties of wool. Physiological and Environmental Liminations to Wool Growth[M]. Amidale: University of New England Publishing Unit, 1979: 223-242. [3] Wang C M, Yang L J, Chang S H, et al . Price analysis of domestic and international major livestock and forage products. Acta Prataculturae Sinica, 2014, 23(1): 300-311. [4] Sanderson M A, Labreveux M, Hall M H. Nutritive value of chicory and English plantain forage. Crop Science Society of America, Madison, USA, 2003, 43(5): 1747-1804. [5] Xu L M, Zhang Z B, Liang X L, et al . Advances in genetic engineerin for drought tolerance in plant. Acta Prataculturae Sinica, 2014, 23(6): 293-303. [6] Shewry P R, Casey R. Seed Protein[M]. Netherlands: Kluwer Academic Publishers, 1999: 109-139. [7] Geli M I, Torrent M, Ludevid D. Two structural domains mediate two sequential events in γ-zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell, 1994, 6(12): 1911-1922. [8] Bellucci M, Alpini A, Paolocci F, et al . Accumulation of maize γ-zein and γ-zein: KDELTo high levels in tobacco leaves and differential increase of BiP synthesis in transformants. Theoretical and Applied Genetics, 2000, 101(5-6): 796-804. [9] Sharma S B, Hancock K R, Ealing P M, et al . Expression of a sulphur-rich maize seed storage protein, δ-zein, in white clover ( Trifolium repens ) to improve forage quality. Molecular Breeding, 1998, 4: 435-448. [10] Bellucci M, Alpini A, Arcioni S. Zein accumulation in forage species ( Lotus corniculatus and Medicago sativa ) and co-expression of the γ-zein: KDEL and β-zein: KDEL polypeptides in tobacco leaf. Plant Cell Reports, 2002, 20(9): 848-856. [11] Lu D Y, Fan Y L, Yu M M, et al . Transgenic plant regeneration with high sulfur-containing amino acids protein gene about alfalfa. Acta Genetic Sinica, 2000, 27(4): 331-337. [12] Li S J, Zhang Z Y. Expression of the Ta6-SFT gene in brassica napus under drought stress. Acta Prataculturae Sinica, 2014, 23(5): 161-167. [13] Cheng L M, Cao Q F, Gao H W. Study on the efficient systems for regeneration and AFL2 gene transformation of puna chicory ( Cichorium intybus L). Acta Agrestia Sinica, 2004, 12(3): 199-203. [14] Zhang L J, Cheng L M, Du J Z. Estabilishent and optimization of puna chicory genetic transformation system with agrobacterium-mediated method. Acta Agrestia Sinica, 2008, 2: 130-134. [15] Fanny Frulleuxl, Guy Weyens, Michel Jacobs. Agrobacterium tumefaciens-mediatated transformation of shoot-buds of chicory. Plant Cell, Tissue and Organ Culture, 1997, 50: 107-112. [16] Song S F, Cao F, Yang P Z, et al . High efficient system establishment on plant regeneration and study on genetics Transformation in Puna Chicory ( Cichorium intybus L.). Molecular Plant Breeding, 2006, 4(4): 565-570. [17] Zhao L. Isolation and Characterization of the DREB Transcription Factor from Commander Chicory and Establishment of Genetic Transformation System of Commander[D]. Nanjing: Nanjing Agricultural University Library, 2013. [18] Zhao L, Chen D D, Ling M X, et al . Comparative study on regeneration and genetic transformation between puna chicory and commander chicory. Acta Botanica Boreali-Occidentalia Sinica, 2012, 32(11): 2169-2176. [3] 王春梅, 杨林杰, 常生华, 等. 国内外主要畜产品与饲料价格分析. 草业学报, 2014, 23(1): 300-311. [5] 徐立明, 张振葆, 梁晓玲, 等. 植物抗旱基因工程研究进展. 草业学报, 2014, 23(6): 293-303. [11] 吕德扬, 范云六, 俞梅敏, 等. 苜蓿高含硫氨基酸蛋白转基因植株再生. 遗传学报, 2000, 27(4): 331-337. [12] 李淑洁, 张正英. Ta6-SFT 基因对油菜的转化及抗旱性分析. 草业学报, 2014, 23(5): 161-167. [13] 程林梅, 曹秋芬, 高洪文, 等. 菊苣再生体系的建立及转AFL2基因的研究. 草地学报, 2004, 12(3): 199-203. [14] 张丽君, 程林梅, 杜建中, 等. 菊苣农杆菌介导转化受体系统的研究. 草地学报, 2011, 6: 1042-1049. [16] 宋书锋, 曹凤, 杨培志, 等. 普那菊苣高效再生体系建立和遗传转化研究. 分子植物育种, 2006, 4(4): 565-570. [17] 赵龙. 将军菊苣DREB家族基因的克隆、功能研究及其遗传转化体系的建立[D]. 南京: 南京农业大学, 2013. [18] 赵龙, 陈丹丹, 梁明祥, 等. 2种菊苣再生体系及遗传转化效率的比较. 西北植物学报, 2012, 32(11): 2169-2176. |