[1] Pachauri R K, Reisinger A. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Geneva: Intergovernmental Panel on Climate Change, 2007: 1-6. [2] Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304(5677): 1623-1627. [3] Sa R L, Li J X, Hou X Y. Research on soil organic carbon storage distribution in the grassland ecosystem. Scientia Agricultura Sinica, 2013, 46(17): 3604-3614. [4] Scurlock J M O, Hall D O. The global carbon sink: a grassland perspective. Global Change Biology, 1998, 4: 229-233. [5] Ni J. Carbon storage in grassland of China. Journal of Arid Environments, 2002, 50: 205-218. [6] Kato T, Tang Y H, Gu S, et al . Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 2004, 124: 121-134. [7] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464: 579-582. [8] Li W H, Zhou X M.The Sustainable and Management Approach of Qinghai-Tibet Plateau Ecosystem[M]. Guangzhou: Guangdong Science and Technology Press, 1998. [9] Fan J W, Zhong H P, Liang B, et al . Carbon stock in grassland ecosystem and its affecting factors. Grassland of China, 2003, 25(6): 51-58. [10] Zhou H K, Zhao X Q, Wen J, et al . The characteristics of soil and vegetation of degenerated alpine steppe in the Yellow River Source Region. Acta Prataculturae Sinica, 2012, 21(5): 1-11. [11] Kotzé E, Sandhage-Hofmann A, Meinel J A, et al . Rangeland management impacts on the properties of clayey soils along grazing gradients in the semi-arid grassland biome of South Africa. Journal of Arid Environments, 2013, 97: 220-229. [12] He N P, Han X G, Yu G R, et al . Soil carbon sequestration rates and potential in the grazing grasslands of Inner Mongolia. Acta Ecologica Sinica, 2012, 32(3): 844-851. [13] Hu X M, Hou X Y, Ding Y, et al . Dynamics of organic carbon storage in Stipa breviflora desert steppe ecosystem under different grazing systems. Chinese Journal of Grassland, 2014, 36(5): 6-11. [14] Xiong D P, Shi P L, Sun Y L, et al . Effects of grazing exclusion on plant productivity and soil carbon, nitrogen storage in Alpine Meadows in northern Tibet, China. Chinese Geographical Science, 2014, 24(4): 488-498. [15] He G Y, Sun H Z, Shi X M, et al . Soil properties of Tibetan Plateau alpine weltland affected by grazing and season. Acta Prataculturae Sinica, 2015, 24(4): 12-20. [16] Fan Y J, Hou X Y, Shi H X, et al . Effects of grazing and fencing on carbon and nitrogen reserves in plants and soils of alpine meadow in the three headwater resource regions. Russian Journal of Ecology, 2013, 44(1): 80-88. [17] Sun D S, Wesche K, Chen D D, et al . Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow. Plant Soil Environment, 2011, 57(6): 271-278. [18] Li W, Huang H Z, Zhang Z N, et al . Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow. Journal of Soil Science and Plant Nutrition, 2011, 11(4): 27-39. [19] Gao Y H, Schumann M, Chen H, et al . Impacts of grazing intensity on soil carbon and nitrogen in an alpine meadow on the eastern Tibetan Plateau. Journal of Food, Agriculture and Environment, 2009, 7(2): 749-754. [20] Li T, Ji L, Liu T, et al . Research on the soil carbon storage of alpine grassland under different land uses in Qinghai-Tibet Plateau. Journal of Agricultural Science and Technology A, 2013, 3(2A): 99-104. [21] Tao Z, Shen C D, Gao Q Z, et al . The soil organic carbon and CO 2 flux of alpine meadow. Science in China (Series D: Earth Sciences), 2007, 37(4): 553-563. [22] Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002, 116(3): 457-463. [23] Zhao H L, He Y H, Zhou R L, et al . Effects of desertification on soil organic C and N content in sandy farmland and grassland of Inner Mongolia. Catena, 2009, 77(3): 187-191. [24] Derner J D, Boutton T W, Briske D D. Grazing and ecosystem carbon storage in the north American great plains. Plant and Soil, 2006, 280(1/2): 77-90. [25] Li L H. Effects of land-use change on soil carbon storage in grassland ecosystems. Acta Phytoecologica Sinica, 1998, 22(4): 300-302. [26] Li L H, Chen Z Z, Wang Q B, et al . Changes in soil carbon storage due to over-grazing in Leymus chinensis steppe in the Xilinriver basin of Inner Mongolia. Journal of Environmental Sciences, 1997, 9(4): 486-490. [27] Milchunas D G, Laurenroth W K. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 1993, 63(4): 327-366. [28] Milchunas D G, Laurenroth W K, Burke I C. Livestock grazing: animal and plant biodiversity of short grass steppe and the relationship to ecosystem function. Oikos, 1998, 83: 65-74. [29] Holt J A. Grazing pressure and soil carbon, microbial biomass and enzyme activities in semi-arid northeastern Australia. Applied Soil Ecology, 1997, 5(2): 143-149. [30] Li X Z, Chen Z Z. Influences of stocking rates on C, N, P contents in plant-soil system. Acta Agrestia Sinica, 1998, 6(2): 90-98. [31] Schuman G E, Reeder J D, Manley J T, et al . Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecological Application, 1999, 9(1): 65-71. [32] Weinhold B J, Henndrickson J R, Karn J F. Pasture management influences on soil properties in the Northern Great plains. Journal of Soil and Water Conservation, 2001, 56(1): 27-31. [33] Gao Y H. Study on Carbon and Nitrogen Distribution Pattern and Cycling Process in an Alpine Meadow Ecosystem under Different Grazing Intensity[M]. Beijing: Chinese Academy of Science, 2007. [34] Yan R R, Xin X P, Wang X, et al . The change of soil carbon and nitrogen under different grazing gradients in Hulunber meadow steppe. Acta Ecologica Sinica, 2014, 34(6): 1587-1595. [35] Li W, Cao W X, Xu C L, et al . Changes of vegetation characteristics in alpine meadow-steppe of eastern Qilian Mountains after different grazing rest mode. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(11): 2339-2345. [36] Li W, Cao W X, Xu C L, et al . Ecological responses of belowground biomass and soil characteristics to different grazing rest mode in alpine meadow-steppe. Acta Agrestia Sinica, 2015, 23(2): 271-276. [37] Chang X F, Zhu X X, Wang S P, et al . Impacts of management practices on soil organic carbon in degraded alpine meadows on the Tibetan Plateau. Biogeosciences, 2014, 11(13): 3495-3503. [38] Miao F H, Guo Y J, Miao P F, et al . Influence of enclosure on community characteristics of alpine meadow in the northeastern edge region of the Qinghai-Tibetan Plateau. Acta Prataculturae Sinica, 2012, 21(3): 11-16. [3] 萨茹拉, 李金祥, 侯向阳. 草地生态系统土壤有机碳储量及其分布特征. 中国农业科学, 2013, 46(17): 3604-3614. [8] 李文华, 周兴民. 青藏高原生态系统的可持续发展和管理方法[M]. 广州: 广东科技出版社, 1998. [9] 樊江文, 钟华平, 梁飚, 等. 草地生态系统碳储量及其影响因素. 中国草地, 2003, 25(6): 51-58. [10] 周华坤, 赵新全, 温军, 等. 黄河源区高寒草原的植被退化与土壤退化特征. 草业学报, 2012, 21(5): 1-11. [12] 何念鹏, 韩兴国, 于贵瑞, 等. 内蒙古放牧草地土壤碳固持速率和潜力. 生态学报, 2012, 32(3): 844-851. [13] 胡向敏, 侯向阳, 丁勇, 等. 不同放牧制度下短花针茅荒漠草原生态系统碳储量动态.中国草地学报, 2014, 36(5): 6-11. [15] 何贵永, 孙浩智, 史小明, 等. 青藏高原高寒湿地不同季节土壤理化性质对放牧模式的响应. 草业学报, 2015, 24(4): 12-20. [21] 陶贞, 沈承德, 高全洲, 等. 高寒草甸土壤有机碳储量和CO 2 通量. 中国科学(D辑: 地球科学), 2007, 37(4): 553-563. [25] 李凌浩. 土地利用变化对草原生态系统土壤碳贮量的影响. 植物生态学报, 1998, 22(4): 300-302. [30] 李香真, 陈佐忠. 不同放牧率对草原植物与土壤C、N、P含量的影响. 草地学报, 1998, 6(2): 90-98. [33] 高永恒. 不同放牧强度下高山草甸生态系统碳氮分布格局和循环过程研究[M]. 北京: 中国科学院, 2007. [34] 闫瑞瑞, 辛晓平, 王旭, 等. 不同放牧梯度下呼伦贝尔草甸草原土壤碳氮变化及固碳效应. 生态学报, 2014, 34(6): 1587-1595. [35] 李文, 曹文侠, 徐长林, 等. 不同休牧模式对东祁连山高寒草甸草原植被特征变化的影响. 西北植物学报, 2014, 34(11): 2339-2345. [36] 李文, 曹文侠, 徐长林, 等. 不同休牧模式对高寒草甸草原土壤特征及地下生物量的影响. 草地学报, 2015, 23(2): 271-276. [38] 苗福泓, 郭雅婧, 缪鹏飞, 等. 青藏高原东北边缘地区高寒草甸群落特征对封育的响应. 草业学报, 2012, 21(3): 11-16. |