[1] Wagner G J. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 1993, 51: 173-212. [2] Ministry of Environmental Protection of PRC, Ministry of Land and Resources of PRC. National survey of soil pollution[N]. China Land Resources Journal, 2014-04-18(02). [3] Conesa H M, Evangelou M W H, Robinson B H, et al . A critical view of current state of phytotechnologies to remediate soils: still a promising tool. The Scientific World Journal, 2012, 1: 1-10. [4] Wu Q, Gao Y J, Li D M, et al . Phytoremediation of heavy metal pollution in river sediment by Medicago sativa L. Journal of Anhui Agricultural Sciences, 2011, 39(28): 17376-17378. [5] Yang J, Li H J, Zhang N, et al . Effects of three kinds of leguminous plants on remedying heavy metals of soil abandoned coal mine. Hubei Agricultural Sciences, 2014, 53(9): 2025-2028. [6] Mei L N, Yuan Q H, Yao T, et al . Effects of cadmium stress on some physiological biochemical characters of four alfalfa varieties. Chinese Journal of Grassland, 2010, 32(3): 21-27. [7] Xu S L, Xing C H, Fang Y. The effect of cadmium stress on growth and Cd content of alfalfa. Guangdong Trace Elements Science, 2008, 15(3): 23-26. [8] Marques A P, Rangel A O, Castro P M. Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 2009, 39(8): 622-654. [9] Potters G, Pasternak T P, Guisez Y, et al . Stress-induced morphogenic responses: growing out of trouble. Trends in Plant Science, 2007, 12(3): 98-105. [10] Lu Z, Zhang Z, Su Y, et al . Cultivar variation in morphological response of peanut roots to cadmium stress and its relation to cadmium accumulation. Ecotoxicology and Environmental Safety, 2013, 91: 147-155. [11] Shi G, Xia S, Ye J, et al . PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology. Environmental and Experimental Botany, 2015, 111: 127-134. [12] Bochicchio R, Sofo A, Terzano R, et al . Root architecture and morphometric analysis of Arabidopsis thaliana grown in Cd/Cu/Zn-gradient agar dishes: A new screening technique for studying plant response to metals. Plant Physiology and Biochemistry, 2015, 91: 20-27. [13] Najeeb U, Jilani G, Ali S, et al . Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. Journal of Hazardous Materials, 2011, 186(1): 565-574. [14] Green J J, Baddeley J A, Cortina J, et al . Root development in the mediterranean shrub Pistacia lentiscus as affected by nursery treatments. Journal of Arid Environments, 2005, 61(1): 1-12. [15] Johnson L D, Marquez-Ortiz J J, Lamb J, et al . Root morphology of alfalfa plant introductions and cultivars. Crop Science, 1998, 38(2): 497-502. [16] Yang Y H, Zhang C R, Xia L J, et al . Effect of cadmium and zinc pollutions of alfalfa quality and cadmium content. Acta Agriculture Boreali-Sinica, 2008, 23: 363-366. [17] Yang F, Wang H. Experimental study on phytoremediation of heavy metal contaminated soil. China New Technologies and Products, 2013, 24: 180-181. [18] Pan C, Teng Y, Luo Y M, et al . Effects of Medicago sativa , Elsholtzia splendens and Sedum plumbizincicola remedying soils contaminated with both polychlorinated biphenyls and heavy metals. Acta Pedologica Sinica, 2012, 49(5): 1062-1067. [19] Wei S H, Zhou Q X, Wang X, et al . A new discovery of cadmium hyperaccumulator- Solanum nigrum L. Chinese Science Bulletin, 2004, 49(24): 2568-2573. [20] Liu W, Shu W S, Lan C Y. A new discovery of cadmium hyperaccumulator- Viola baoshanensis . Chinese Science Bulletin, 2003, 48(19): 2046-2049. [21] Wang S F, Shi X, Sun H J, et al . Metal uptake and root morphological changes for two varieties of Salix integra under cadmium stress. Acta Ecologica Sinica, 2013, 33(19): 6065-6073. [22] Zhou M M, Pan Z H, Chen D D, et al . The influences of different vegetation ecosystems on heavy metals in soil in semi-arid region. Spectroscopy and Spectral Analysis, 2010, 30(10): 2789-2792. [23] Arduini I, Masoni A, Mariotti M, et al . Low cadmium application increase Miscanthus growth and cadmium translocation. Environmental and Experimental Botany, 2004, 52(2): 89-100. [24] Kubo K, Watanabe Y, Matsunaka H, et al . Differences in cadmium accumulation and root morphology in seedlings of Japanese wheat varieties with distinctive grain cadmium concentration. Plant Production Science, 2011, 14(2): 148-155. [25] Xiong J, Lu H, Lu K, et al . Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta, 2009, 230(4): 599-610. [26] Luná C ˙ ková L, Aottníková A, Masarovi C ˙ ová E, et al . Comparison of cadmium effect on willow and poplar in response to different cultivation conditions. Biologia Plantarum, 2003, 47(3): 403-411. [27] Maksimoviĉ I, Kastori R, Krstiĉ L, et al . Steady presence of cadmium and nickel affects root anatomy, accumulation and distribution of essential ions in maize seedlings. Biologia Plantarum, 2007, 51(3): 589-592. [28] Lu Z W. Physiological Mechanisms of the Absorption and Translocation of Cadmium in Peanut Plants[D]. Huaibei: Huaibei Normal University, 2014. [29] Cai L P, Wu P F, Hou X L, et al . Morphological response to different drought stress in the roots of Neyraudia reynaudiana . Chinese Agriculture Science Bulletin, 2012, 28(28): 44-48. [30] Tian X F, Wei H, Jia Z M, et al . Effects of cadmium on growth and root’s forms of Firmia naplatanifolia seedlings. Journal of Southwest China Normal University (Natural Science Edition), 2008, 33(2): 93-98. [31] Li J G, Zhu E, Li T Q, et al . Effects of nitrogen fertilizer on biomass, root morphology and Cd accumulation of Cd-stressed Sedumalfredii hance species. Environmental Pollution and Control, 2007, 29: 271-275. [32] Bayuelo-Jiménez J S, Gallardo-Valdéz M, Pérez-Decelis V A, et al . Genotypic variation for root traits of maize ( Zea mays L.) from the Purhepecha plateau under contrasting phosphorus availability. Field Crops Research, 2011, 121(3): 350-362. [33] Li Z Y, Fan X Y, Tang S R, et al . Effects of elevated CO 2 on the Cd uptake and root morphology of different rice varieties under cadmium stress. Chinese Journal of Applied Ecology, 2012, 4: 1063-1069. [34] Ren A T, Lu W H, Yang J J, et al . Seasonal change patterns in the production and mortality of fine roots in cotton and alfalfa. Acta Prataculturae Sinica, 2015, 24(6): 213-219. [35] Dr?zkiewicz M, Tukendorf A, Baszyński T. Age-dependent response of maize leaf segments to cadmium treatment: effect on chlorophyll fluorescence and phytochelatin accumulation. Journal of Plant Physiology, 2003, 160: 247-254. [2] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[N]. 中国国土资源报, 2014-04-18(02). [4] 吴卿, 高亚洁, 李东梅, 等. 紫花苜蓿对重金属污染河道底泥的修复能力研究. 安徽农业科学, 2011, 39(28): 17376-17378. [5] 汤洁, 李华娟, 张楠, 等. 三种牧草对煤矿废弃地土壤重金属的修复效应. 湖北农业科学, 2014, 53(9): 2025-2028. [6] 梅丽娜, 袁庆华, 姚拓, 等. 镉胁迫对四个苜蓿品种生理特性的影响. 中国草地学报, 2010, 32(3): 21-27. [7] 徐苏凌, 邢承华, 方勇. 镉胁迫对紫花苜蓿生长及植株镉含量的影响. 广东微量元素科学, 2008, 15(3): 23-26. [16] 杨玉惠, 张春荣, 夏立江, 等. 镉锌污染对紫花苜蓿体内镉含量及品质的影响. 华北农学报, 2008, 23: 363-366. [17] 杨帆, 王辉. 重金属污染土壤植物修复效果试验研究. 中国新技术新产品, 2013, 24: 180-181. [18] 潘澄, 滕应, 骆永明, 等. 紫花苜蓿、海州香薷及伴矿景天对多氯联苯与重金属复合污染土壤的修复作用. 土壤学报, 2012, 49(5): 1062-1067. [19] 魏树和, 周启星, 王新, 等. 一种新发现的镉超积累植物龙葵. 科学通报, 2004, 49(24): 2568-2573. [20] 刘威, 束文圣, 蓝崇钰. 宝山堇菜——一种新的镉超富集植物. 科学通报, 2003, 48(19): 2046-2049. [21] 王树凤, 施翔, 孙海菁, 等. 镉胁迫下杞柳对金属元素的吸收及其根系形态构型特征. 生态学报, 2013, 33(19): 6065-6073. [22] 周蒙蒙, 潘志华, 陈东东, 等. 半干旱地区不同植被生态体系对土壤重金属含量的影响. 光谱学与光谱分析, 2010, 30(10): 2789-2792. [28] 陆紫微. 花生吸收和转运镉的生理机制[D]. 淮北: 淮北师范大学, 2014. [29] 蔡丽平, 吴鹏飞, 侯晓龙, 等. 类芦根系对不同强度干旱胁迫的形态学响应. 中国农学通报, 2012, 28(28): 44-48. [30] 田晓锋, 魏虹, 贾中民, 等. 重金属镉(Cd 2+ )对梧桐幼苗根生长及根系形态的影响. 西南师范大学学报(自然科学版), 2008, 33(2): 93-98. [33] 李中阳, 樊向阳, 唐世荣, 等. CO 2 浓度升高对不同品种水稻镉吸收和根形态的影响. 应用生态学报, 2012, 4: 1063-1069. [34] 任爱天, 鲁为华, 杨洁晶, 等. 棉花、苜蓿根生长和死亡的季节变化. 草业学报, 2015, 24(6): 213-219. |