[1] Li W. Cloning and Expression Analysis of Transcription Factors Gene PpNAC in Poa pratensis L. Beijing: Chinese Academy of Forestry, 2011. 李伟. 草地早熟禾转录因子基因PpNAC的克隆和表达分析. 北京: 中国林业科学研究院, 2011. [2] Xu L X, Han L B, Huang B R. Antioxidant enzyme qctivities and gene expression patterns in leaves of kentucky bluegrass in response to drought and post-drought recovery. Journal of The American Society for Horticultural Science, 2011, 136(4): 247-255. [3] Xin J N. Genetic Transformation of Drought-resistance and Salt-resistance Gene in Kentucky Bluegrass ( Poa pratensis L.). Beijing: Beijing Forestry University, 2006. 信金娜. 草地早熟禾( Poa pratensis L.)抗旱耐盐基因遗传转化. 北京: 北京林业大学, 2006. [4] Zhang Z B, Shan L. Advances in inheritance of crop drought resistance physiological traits. Chinese Science Bulletin, 1998, (17): 1812-1817. 张正斌, 山仑. 作物抗旱生理性状遗传研究进展. 科学通报, 1998, (17): 1812-1817. [5] Wang X C, Yang Z R, Wang M, et al . High-throughput sequencing technology and its application. China Biotechnology, 2012, (1): 109-114. 王兴春, 杨致荣, 王敏, 等. 高通量测序技术及其应用. 中国生物工程杂志, 2012, (1): 109-114. [6] Duhoux A, Carrere S, Gouzy J, et al . RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Molecular Biology, 2015, 87(4/5): 473-487. [7] Zhou Q, Luo D, Ma L C, et al . Development and cross-species transferability of EST-SSR markers in siberian wildrye ( Elymus sibiricus L.) using illumina sequencing. Scientific Reports, 2016, 6: 20549. [8] Zhu C, Ai L, Wang L, et al . De Novo Transcriptome Analysis of Rhizoctonia Solani AG1 IA Strain Early Invasion in Zoysia japonica Root. Frontiers in Microbiology, 2016, 7: 708. [9] Ahn J H, Kim J, Kim S, et al . De novo transcriptome analysis to identify anthocyanin biosynthesis genes responsible for tissue-specific pigmentation in Zoysia grass ( Zoysia japonica Steud.). Plos One, 2015, 10: e01379439. [10] Zhao S, Zhang N, Liu D Y, et al . The impact of fenarimol application on the magnaporthe poae and fungi in the rhizosphere soil of Kentucky Bluegrass ( Poa pratensis L.). Journal of Nanjing Agricultural University, 2015, (4): 590-595. 赵爽, 张宁, 刘东阳, 等. 氯苯嘧啶醇施用对草坪斑枯病致病菌及根际土壤真菌的影响. 南京农业大学学报, 2015, (4): 590-595. [11] Grabherr M G, Haas B J, Yassour M, et al . Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 130-644. [12] Anders S, Wolfgang H. Differential expression analysis for sequence count data. Genome Biology, 2010, 11(10): 106. [13] Young M D, Wakefield M J, Smyth G K, et al . Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology, 2010, 11: 142. [14] Kanehisa M, Araki M, Goto S, et al . KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008, 36(SI): 480-484. [15] Zhang J J, Li J J, Nian H J. The role of calcium/calmodulin signaling pathways in the stresses: progress in researches. Chinese Journal of Microecology, 2013, (7): 858-860. 张晶晶, 李金金, 年洪娟. 钙/钙调素信号途径在胁迫中的作用研究进展. 中国微生态学杂志, 2013, (7): 858-860. [16] Sanchez-Barrena M J, Fujii H, Angulo I, et al . The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Molecular Cell, 2007, 26(3): 427-435. [17] He L., Li F H, Sha L N, et al . Activity of serine/threonine protein phosphatase type-2C (PP2C) and its relationships to drought tolerance in maize. Acta Agronomica Sinica, 2008, (5): 899-903. 何亮, 李富华, 沙莉娜, 等. 玉米2C型丝氨酸/苏氨酸蛋白磷酸酶(PP2C)活性与耐旱性的关系. 作物学报, 2008, (5): 899-903. [18] Bai X M. Cloning of MAPK gene which was activated by drought in Medicago sativa . Inner Mongolia Petrochemical Industry, 2011, (5): 18-20. 白雪梅. 紫花苜蓿( Medicago sativa )抗旱相关促分裂原活化蛋白激酶MAPK基因的克隆. 内蒙古石油化工, 2011, (5): 18-20. [19] Ning Y S. Functional and Mechanistic Analysis of the SINA E3 Ligase OsDIS1 in Rice. Changsha: Hunan Agricultural University, 2011. 宁约瑟. 水稻SINA泛素连接酶OsDIS1的功能分析和作用机制研究. 长沙: 湖南农业大学, 2011. [20] Kang Z L, Yang Y H, Zhang L J. Molecular mechanism of responsing to drought stress in plants. Journal of Maize Sciences, 2006, (2): 96-100. 康宗利, 杨玉红, 张立军. 植物响应干旱胁迫的分子机制. 玉米科学, 2006, (2): 96-100. [21] Wang Y N, Liu C, Meng K, et al . Effects of exogenous carbon source on carbon and nitrogen metabolism of wheat under drought stress. Journal of Henan Agricultural Sciences, 2015, (10): 29-34. 王雅楠, 刘存, 孟珂, 等. 外源性碳源对干旱胁迫下小麦幼苗碳氮代谢的影响. 河南农业科学, 2015, (10): 29-34. [22] Sasaki-Sekimoto Y, Taki N, Obayashi T, et al . Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis . Plant and Cell Physiology, 2006, 47S: 233. [23] Abebe T, Melmaiee K, Berg V, et al . Drought response in the spikes of barley: gene expression in the lemma, palea, awn, and seed. Functional & Integrative Genomics, 2010, 10(2): 191-205. [24] Xu Y, Liu R, Yan L, et al . Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis . Journal of Experimental Botany, 2012, 63(3); 1095-1106. [25] Pan L, Zhang X Q, Wang J P, et al . Transcriptional profiles of drought-related genes in modulating metabolic processes and antioxidant defenses in Lolium multiflorum . Frontiers in Plant Science, 2016, 7: 519. |