[1] Lulli F, Guglielminetti L, Grossi N, et al . Physiological and morphological factors influencing leaf, rhizome and stolon tensile strength in C 4 turfgrass species. Functional Plant Biology, 2011, 38(11): 919-926. [2] Ralph J, Lapierre C, Marita J M, et al . Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR. Phytochemistry, 2001, 57(6): 993-1003. [3] Barrière Y, Riboulet C, Méchin V, et al . Genetics and genomics of lignification in grass cell walls based on maize as model species. Genes Genomes Genomics, 2007, 1(2): 133-156. [4] Harrington M J, Mutwil M, Barrière Y, et al . Molecular biology of lignification in grasses. Advances in Botanical Research, 2012, 61: 77-112. [5] Huang J, Gu M, Lai Z, et al . Functional analysis of the Arabidopsis functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology, 2010, 153(4): 1526-1538. [6] Schilmiller A L, Stout J, Weng J K, et al . Mutations in the cinnamate 4-hydroxylase gene impact metabolism, growth and development in Arabidopsis . The Plant Journal, 2009, 60(5): 771-782. [7] Xu B, Escamilla-Treviño L L, Sathitsuksanoh N, et al . Silencing of 4-coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytologist, 2011, 192(3): 611-625. [8] Franke R, Hemm M R, Denault J W, et al . Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis . The Plant Journal, 2002, 30(1): 47-59. [9] Pichon M, Deswartes C, Gerentes D, et al . Variation in lignin and cell wall digestibility in caffeic acid O-methyltransferase down-regulated maize half-sib progenies in field experiments. Molecular Breeding, 2006, 18(3): 253-261. [10] Ruegger M, Meyer K, Cusumano J C, et al . Regulation of ferulate-5-hydroxylase expression in Arabidopsis in the context of sinapate ester biosynthesis. Plant Physiology, 1999, 119(1): 101-110. [11] Saathoff A J, Sarath G, Chow E K, et al . Downregulation of cinnamyl-alcohol dehydrogenase in switchgrass by RNA silencing results in enhanced glucose release after cellulase treatment. PloS one, 2011, 6(1): e16416. [12] Ookawa T, Inoue K, Matsuoka M, et al . Increased lodging resistance in long-culm, low-lignin gh2 rice for improved feed and bioenergy production. Scientific Reports, 2014, 4: 6567. [13] Hirano K, Aya K, Kondo M, et al . OsCAD2 is the major CAD gene responsible for monolignol biosynthesis in rice culm. Plant Cell Reports, 2012, 31(1): 91-101. [14] Knight M E, Halpin C, Schuch W. Identification and characterization of cDNA clones encoding cinnamyl alcohol dehydrogenase from tobacco. Plant Molecular Biology, 1992, 19(5): 793-801. [15] Sibout R, Eudes A, Pollet B, et al . Expression pattern of two paralogs encoding cinnamyl alcohol dehydrogenases in Arabidopsis . Isolation and characterization of the corresponding mutants. Plant Physiology, 2003, 132(2): 848-860. [16] Sibout R, Eudes A, Mouille G, et al . Cinnamyl alcohol dehydrogenase-C and-D are the primary genes involved in lignin biosynthesis in the floral stem of Arabidopsis . The Plant Cell, 2005, 17(7): 2059-2076. [17] Eudes A, Pollet B, Sibout R, et al . Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana . Planta, 2006, 225(1): 23-39. [18] Halpin C, Holt K, Chojecki J, et al . Brown-midrib maize (bm1)-a mutation affecting the cinnamyl alcohol dehydrogenase gene. The Plant Journal, 1998, 14(5): 545-553. [19] Fornalé S, Capellades M, Encina A, et al . Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. Molecular Plant, 2012, 5(4): 817-830. [20] Barakat A, Bagniewska-Zadworna A, Choi A, et al . The cinnamyl alcohol dehydrogenase gene family in Populus : phylogeny, organization, and expression. BMC Plant Biology, 2009, 9(1): 26. [21] Sattler S E, Saathoff A J, Haas E J, et al . A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the sorghum brown midrib6 phenotype. Plant Physiology, 2009, 150(2): 584-595. [22] Altschul S F, Gish W, Miller W, et al . Basic local aligment search tool. Journal of Molecular Biology, 1990, 215(3): 403-410. [23] Tanaka H, Hirakawa H, Kosugi S, et al . Sequencing and comparative analyses of the genomes of zoysiagrasses. DNA Research, 2016, 23(2): 171-180. [24] Xie Q, Niu J, Xu X, et al . Corrigendum: De novo assembly of the Japanese lawngrass ( Zoysia japonica Steud.) root transcriptome and identification of candidate unigenes related to early responses under salt stress. Frontiers in Plant Science, 2015, 6: 610. [25] Chao N, Liu S X, Liu B M, et al . Molecular cloning and functional analysis of nine cinnamyl alcohol dehydrogenase family members in Populus tomentosa. Planta, 2014, 240(5): 1097-1112. [26] Bukh C, Nord-Larsen P H, Rasmussen S K. Phylogeny and structure of the cinnamyl alcohol dehydrogenase gene family in Brachypodium distachyon . Journal of Experimental Botany, 2012, 63(17): 6223-6236. [27] Tobias C M, Chow E K. Structure of the cinnamyl-alcohol dehydrogenase gene family in rice and promoter activity of a member associated with lignification. Planta, 2005, 220(5): 678-688. [28] Tronchet M, Balagué C, Kroj T, et al . Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis . Molecular Plant Pathology, 2010, 11(1): 83-92. [29] Vallet C, Chabbert B, Czaninski Y, et al . Histochemistry of lignin deposition during sclerenchyma differentiation in alfalfa stems. Annals of Botany, 1996, 78(5): 625-632. |