[1] Killingbeck K T.Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology, 1996, 77(6): 1716-1727. [2] Blanco J A, Imbert J B, Castillo F J.Thinning affects nutrient resorption and nutrient-use efficiency in two Pinus sylvestris stands in the Pyrenees. Ecological Applications, 2009, 19: 682-698. [3] Lü X T, Freschet G T, Flynn D F B, et al. Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. Journal of Ecology, 2012, 100: 144-150. [4] Reed S C, Townsend A R, Davidson E A, et al. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytologist, 2012, 196(1): 173-180. [5] Kobe R K, Lepczyk C A, Iyer M.Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology, 2005, 86: 2780-2792. [6] Huang J, Wang X, Yan E.Leaf nutrient concentration, nutrient resorption and litter decomposition in an evergreen broad-leaved forest in eastern China. Forest Ecology and Management, 2007, 239: 150-158. [7] Wang Z N, Lu J Y, Yang H M, et al. Resorption of nitrogen, phosphorus and potassium from leaves of lucerne stands of different ages. Plant and Soil, 2014, 383: 301-312. [8] Sterner R W, Elser J J.Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton: Princeton University Press, 2002. [9] Li W R, Zhang S Q, Shan L.Effect of water stress on characteristics of root water uptake and photosynthesis in alfalfa seedlings. Acta Agrestia Sinica, 2007, 15(3): 206-211. 李文娆, 张岁岐, 山仑. 水分胁迫对紫花苜蓿根系吸水与光合特性的影响. 草地学报, 2007, 15(3): 206-211. [10] Han R H, Lu X S, Gao G J, et al. Photosynthetic physiological response of alfalfa (Medicago sativa) to drought stress. Acta Ecologica Sinica, 2007, 27(12): 5229-5237. 韩瑞宏, 卢欣石, 高桂娟, 等. 紫花苜蓿(Medicago sativa)对干旱胁迫的光合生理响应. 生态学报, 2007, 27(12): 5229-5237. [11] Erice G, Louahlia S, Irigoyen J J, et al. Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Journal of Plant Physiology, 2010, 167(2): 114-120. [12] Wang D M, Yang H M.Carbon and nitrogen stoichiometry at different growth stages in legumes and grasses. Pratacultural Science, 2011, 28(6): 921-925. 王冬梅, 杨惠敏. 4种牧草不同生长期C、N生态化学计量特征. 草业科学, 2011, 28(6): 921-925. [13] Wang Z N, Lu J Y, Yang M, et al. Stoichiometric characteristics of carbon, nitrogen, and phosphorus in leaves of differently aged lucerne (Medicago sativa) stands. Frontiers in Plant Science, 2015, 6: 1062. [14] Duan B H, Lu J Y, Liu M G, et al. Relationships between biological nitrogen fixation and leaf resorption of nitrogen, phosphorus, and potassium in the rain-fed region of eastern Gansu, China. Acta Prataculturae Sinica, 2016, 25(12): 76-83. 段兵红, 陆姣云, 刘敏国, 等. 陇东雨养农区紫花苜蓿叶片氮、磷、钾重吸收与生物固氮的偶联关系. 草业学报, 2016, 25(12): 76-83. [15] Zeng B.Forage production experiment. Chongqing: Southwest Normal University Press, 2013. 曾兵. 饲草生产学实验. 重庆: 西南师范大学出版社, 2013. [16] Li Z Y, Zhang Q X, Tong Z Y, et al. Analysis of morphological and physiological responses to low Pi stress in different alfalfas. Scientia Agricultura Sinica, 2017, 50(20): 3898-3907. 栗振义, 张绮芯, 仝宗永, 等. 不同紫花苜蓿品种对低磷环境的形态与生理响应分析. 中国农业科学, 2017, 50(20): 3898-3907. [17] Vergutz L, Manzoni S, Porporato A, et al. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecological Monographs, 2012, 82(2): 205-220. [18] Veneklaas E J, Lambers H, Bragg J, et al. Opportunities for improving phosphorus-use efficiency in crop plants. New Phytologist, 2012, 195: 306-320. [19] Guo Z W, Chen S L, Yang Q P, et al. Effects of stand desity on Oligostachyum lubricum leaf carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption. Chinese Journal of Applied Ecology, 2013, 24(4): 893-899. 郭子武, 陈双林, 杨清平, 等. 密度对四季竹叶片C、N、P化学计量和养分重吸收特征的影响. 应用生态学报, 2013, 24(4): 893-899. [20] Koerselman W, Meuleman A F M. The vegetation N∶P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 1996, 33: 1441-1450. [21] Olde V H, Wassen M J, Verkroost W M, et al. Species richness-productivity patterns differ between N-, P-, and K-limited wetlands. Ecology, 2003, 84(8): 2191-2199. [22] Wei D P, Zhang J, Zhang D J, et al. Leaf carbon, nitrogen, and phosphorus resorption and the stoichiometry in Pinus massoniana plantations with various canopy densities. Chinese Journal of Applied and Environmental Biology, 2017, 23(3): 560-569. 魏大平, 张健, 张丹桔, 等. 不同林冠郁闭度马尾松(Pinus massoniana)叶片养分再吸收率及其化学计量特征. 应用与环境生物学报, 2017, 23(3): 560-569. [23] Deng H J, Chen A M, Yan S W, et al. Nutrient resorption efficiency and C∶N∶P stoichiometry in different ages of Leucaena Leucocephala. Chinese Journal of Applied and Environmental Biology, 2015, 21(3): 522-527. 邓浩俊, 陈爱民, 严思维, 等. 不同林龄新银合欢重吸收率及其C∶N∶P化学计量特征. 应用与环境生物学报, 2015, 21(3): 522-527. |