[1] Zhang D, Long H Y, Jin J, et al. Effects of growth interaction effect of Leguminous and Gramineous pasture intercropping and absorption of nutrient and phosphorus on pasture expression. Acta Prataculturae Sinica, 2018, 27(10): 15-22. 张德, 龙会英, 金杰, 等. 豆科与禾本科牧草间作的生长互作效应及对氮、磷养分吸收的影响. 草业学报, 2018, 27(10): 15-22. [2] Yong T W, Xiang D B, Zhang J, et al. Analysis of nitrogen uptake and utilization efficiency and N fertilizer residual effect in the wheat-maize-soybean and wheat-maize-sweet potato relay strip intercropping. Acta Prataculturae Sinica, 2011, 20(6): 34-44. 雍太文, 向达兵, 张静, 等. 小麦/玉米/大豆和小麦/玉米/甘薯套作的氮素吸收利用及氮肥残效. 草业学报, 2011, 20(6): 34-44. [3] Li Y, Yu C B, Cheng X, et al. Intercropping alleviates the inhibitory effect of N fertilization on nodulation and symbiotic N2 fixation of faba bean. Plant and Soil, 2009, 323(2): 295-308. [4] Hauggaard-Nielsen H, Gooding M, Ambus P, et al. Pea-barley intercropping for efficient symbiotic N2-fixation, soil N acquisition and west of other nutrient S in European organic cropping system. Field Crops Research, 2009, 113(1): 64-71. [5] Hu F L, Zhao C, Feng F C, et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant and Soil, 2017, 412: 235-251. [6] Chen G P, Zhao C, Feng F X, et al. Effect of root interspecific interaction and irrigation level on nodulation characteristics of peas in a maize-pea intercropping system. Research of Agricultural Modernization, 2015, 36(3): 488-493. 陈桂平, 赵财, 冯福学, 等. 根间作用及供水水平对玉米豌豆间作中豌豆结瘤特性的影响. 农业现代化研究, 2015, 36(3): 488-493. [7] Li J, Wang W L, Zhao X, et al. Effect of roots partitions on interspecific competition and nitrogen fixation in the pea-maize intercropping. Agricultural Research in the Arid Areas, 2016, 34(6): 177-183. 李娟, 王文丽, 赵旭, 等. 根际分隔对玉米/豌豆间作种间竞争及豌豆结瘤固氮的影响. 干旱地区农业研究, 2016, 34(6): 177-183. [8] Dai J, Chai Q, Li G.Effects of root partition and planting patterns on the roots distribution of maize and pea population. Pratacultural Science, 2011, 28(11): 2162-2166. 代晋, 柴强, 李广. 隔根和种植模式对玉米豌豆群体的根分布及豌豆根瘤的影响. 草业科学, 2011, 28(11): 2162-2166. [9] Yu X B, Su B Y, Gong W Z, et al. The nodule characteristics and nitrogen fixation of soybean in maize-soybean relay strip intercropping. Scientia Agricultura Sinica, 2014, 47(9): 1743-1753. 于晓波, 苏本营, 龚万灼, 等. 玉米-大豆带状套作对大豆根瘤性状和固氮能力的影响. 中国农业科学, 2014, 47(9): 1743-1753. [10] Yang W Y, Du Q, Yang H, et al. Effects of different varieties and root barriers on soybean nodule nitrogen fixation and nitrogen uptake in maize/soybean intercropping system. Journal of Sichuan Agricultural University, 2016, 34(1): 1-5. 杨文英, 杜青, 杨航, 等. 玉米/大豆套作系统下不同品种与根系分隔对大豆根瘤固氮及氮素吸收的影响. 四川农业大学学报, 2016, 34(1): 1-5. [11] Li Y Y, Sun J H, Li C J, et al. Effects of interspecific interactions and nitrogen fertilization rates on the agronomic and nodulation characteristics of intercropped faba bean. Scientia Agricultura Sinica, 2009, 42(10): 3467-3474. 李玉英, 孙建好, 李春杰, 等. 施氮对蚕豆/玉米间作系统蚕豆农艺性状及结瘤特性的影响. 中国农业科学, 2009, 42(10): 3467-3474. [12] Zhang G G, Dong S T, Yang Z B.Production performance of alfalfa+maize intercropping systems and evaluation of interspecies competition. Acta Prataculturae Sinica, 2011, 20(1): 22-30. 张桂国, 董树亭, 杨在宾. 苜蓿+玉米间作系统产量表现及其种间竞争力的评定. 草业学报, 2011, 20(1): 22-30. [13] Liu Z K, Cao W D, Qin W L, et al. A study on the pattern and effect of Zea mays intercropping with Medicago sativa. Acta Prataculturae Sinica, 2009, 18(6): 158-163. 刘忠宽, 曹卫东, 秦文利, 等. 玉米-紫花苜蓿间作模式与效应研究. 草业学报, 2009, 18(6): 158-163. [14] Chen Y X, Zhou D W, Zhang Y F.Yield and photosynthesis of intercropped maize and alfalfa. Acta Agrestia Sinica, 2004, 12(2): 107-112. 陈玉香, 周道玮, 张玉芬. 玉米、苜蓿间作的产草量及光合作用. 草地学报, 2004, 12(2): 107-112. [15] Sun B R.The root-soil interaction mechanism of improved phosphorus uptake and utilization in maize/alfalfa intercropping system. Changchun: Northeast Normal University, 2017. 孙宝茹. 玉米/紫花苜蓿间作磷素高效吸收利用的根系-土壤互作机理. 长春: 东北师范大学, 2017. [16] Lin F, Liu X J, Tong C C, et al. A study of root system characteristics and carbon and nitrogen metabolism of alfalfa and four grass forages in mono-culture or intercropped. Acta Prataculturae Sinica, 2019, 28(9): 1-10. 蔺芳, 刘晓静, 童长春, 等. 4种间作模式下牧草根系特性及其碳、氮代谢特征研究. 草业学报, 2019, 28(9): 1-10. [17] Willey R W, Reddy M S.A field technique for separating above and below ground interactions in intercropping: An experiment with pearl millet/groundnut. Experiment Agriculture, 1981, 17: 257-264. [18] Meng L, Zhang A, Wang F, et al. Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Frontiers in Plant Science, 2015, 6: 1-10. [19] Chen G D, Chai Q, Huang G B, et al. Belowground interspecies interaction enhances productivity and water use efficiency in maize-pea intercropping systems. Crop Science, 2015, 55: 420-428. [20] Li Y Y, Pang F H, Sun J H, et al. Effects of root barrier between intercropped maize and faba bean an nitrogen (N) application on the spatial distributions and morphology of crops’ roots. Journal of China Agricultural University, 2010, 15(4): 13-19. 李玉英, 庞发虎, 孙建好, 等. 根系分隔和施氮对蚕豆/玉米间作体系根系分布和形态的影响. 中国农业大学学报, 2010, 15(4): 13-19. [21] Liu Y C, Xiao J X, Zheng Y, et al. Effects of nitrogen levels and root barriers on nitrogen absorption of intercropping Triticum aestivum and Vicia faba. Journal of Southwest Forestry University, 2018, 38(1): 72-78. 刘英超, 肖靖秀, 郑毅, 等. 不同施氮水平及根系分隔方式对间作小麦蚕豆氮吸收的影响. 西南林业大学学报, 2018, 38(1): 72-78. [22] Liu J, Tang L, Gao H, et al. Enhancement of alfalfa yield and quality by plant growth-promoting rhizobacteria under saline-alkali conditions. Journal of the Science of Food and Agriculture, 2018, 99(1): 1-32. [23] Kuai J L.Effect of nitrogen forms and supply levels on the growth characteristics, nodulation and nitrogen fixation of alfalfa. Lanzhou: Gansu Agriculture University, 2011. 蒯佳林. 氮素形态及供应水平对紫花苜蓿生长特性及结瘤固氮的影响. 兰州: 甘肃农业大学, 2011. [24] Xia X, Ma C, Dong S, et al. Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Soil Science and Plant Nutrition, 2017, 63(5): 470-482. [25] Lu R K.Chemical Analysis of Soil Agriculture. Beijing: China Agricultural Science and Technology Press, 2000. 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000. [26] Kermah M, Franke A C, Adjei-Nsiah S, et al. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana. Field Crops Research, 2017, 213: 38-50. [27] Xia H Y, Zhao J H, Sun J H, et al. Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research, 2013, 150(15): 52-62. [28] Lin H X, Pan X H, Yuan Z Q, et al. Effects of nitrogen application and cassava-peanut intercropping on cassava nutrient accumulation and system nutrient utilization. Scientia Agricultura Sinica, 2018, 51(17): 3275-3290. 林洪鑫, 潘晓华, 袁展汽, 等. 施氮和木薯-花生间作对木薯养分积累和系统养分利用的影响. 中国农业科学, 2018, 51(17): 3275-3290. [29] Fan F L, Zhang F S, Song Y, et al. Nitrogen fixation of faba bean (Vicia faba L.) interacting with a non-legume in two contrasting intercropping systems. Plant and Soil, 2006, 283(1/2): 275-286. [30] Liu Y C, Qin X M, Xiao J X, et al. Intercropping influences component and content change of flavonoids in root exudates and nodulation of faba bean. Journal of Plant Interactions, 2017, 12(1): 187-192. [31] Li B, Li Y Y, Wu H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496-6501. [32] van Kessel C, Hartley C. Agricultural management of grain legumes, has it led to an increase in nitrogen fixation? Field Crops Research, 2000, 465: 165-181. [33] Chu G X, Shen Q R, Cao J L.Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility. Plant and Soil, 2004, 263: 17-27. [34] Pang J, Wang Y, Lambers H, et al. Commensalism in an agro ecosystem: Hydraulic redistribution by deep-rooted legumes improves survival of a droughted shallow-rooted legume companion. Physiologia Plantarum, 2013, 149: 79-90. [35] Agegnehu G, Ghizaw A, Sinebo W.Yield performance and land-use efficiency of barley and faba bean mixed cropping in Ethiopian highlands. European Journal of Agronomy, 2006, 25: 202-207. [36] Chen P, Du Q, Pang T, et al. Effects of root interaction intensity on crop roots distribution above-ground growth in a maize/soybean relay intercropping system. Journal of Sichuan Agricultural University, 2018, 36(1): 28-59. 陈平, 杜青, 庞婷, 等. 根系互作强度对玉米/大豆套作系统下作物根系分布及地上部生长的影响. 四川农业大学学报, 2018, 36(1): 28-59. [37] Voisin A S, Munier-Jolain N G, Salon C. The nodulation process is tightly adjusted to plant growth. An analysis using environmentally and genetically induced variation of nodule number and biomass in pea. Plant and Soil, 2010, 337(1): 399-412. [38] Ye F, Liu X J, Zhang J X.Effects of nitrogen forms on growth, nodulation and nitrogen-fixation of alfalfa at flowering stage. Grassland and Turf, 2014, 34(2): 1-6. 叶芳, 刘晓静, 张静霞. 氮素形态对紫花苜蓿盛花期生长及结瘤固氮的影响. 草原与草坪, 2014, 34(2): 1-6. [39] Dong S K, Liu L J, Sun C S, et al. Effects of nitrogen levels on nodule growth of soybean using 15N tracing method. Journal of Plant Nutrition and Fertilizers, 2011, 17(4): 985-988. 董守坤, 刘丽君, 孙聪姝, 等. 利用15N标记研究氮素水平对大豆根瘤生长的影响. 植物营养与肥料学报, 2011, 17(4): 985-988. [40] Liu Y C, Xiao J X, Tang L, et al. Effect of nitrogen application rate on root soy isoflavone exudate of wheat/faba bean intercropping system. Chinese Journal of Eco-Agriculture, 2018, 26(6): 799-806. 刘英超, 肖靖秀, 汤利, 等. 施氮量对间作小麦蚕豆根系分泌大豆异黄酮的影响. 中国生态农业学报, 2018, 26(6): 799-806. [41] Zhou X J, Liang Y, Shen S H, et al. Effects of rhizobial inoculation and shading on nitrogen fixation and photosynthesis of soybean. Scientia Agricultura Sinica, 2007, 40(3): 478-484. 周相娟, 梁宇, 沈世华, 等. 接种根瘤菌和遮光对大豆固氮和光合作用的影响. 中国农业科学, 2007, 40(3): 478-484. |