[1] Zhang P, Yang W J, Deng T H B, et al. Stable isotope fractionation of zinc and cadmium in soil-plant system: A review. Chinese Science Bulletin, 2018, 63: 32-41. 张鹏, 杨文俊, 邓腾灏博, 等. 土壤-植物体系中锌镉稳定同位素分馏研究进展. 科学通报, 2018, 63: 32-41. [2] Hu X, Li X Y, Wang P, et al. Influence of exclosure on CT-measured soil macropores and root architecture in a shrub-encroached grassland in Northern China. Soil and Tillage Research, 2019, 187: 21-30. [3] Juan J, Pablo F, Louis T, et al. Comparative root system structure of post-fire Pinus halepensis and Cistus monspeliensis saplings. Plant Ecology, 2003, 168: 309-320. [4] Jumana A, Andrew F G, Georgios N K J, et al. A quantitative method for the high through put screening for the soil adhesion properties of plant and microbial polysaccharides and exudates. Plant and Soil, 2018, 428(1/2): 57-65. [5] Glimskar A.Estimates of root system topology of five plant species grown at steady-state nutrition. Plant and Soil, 2012, 227(1): 249-256. [6] Wang H, Joel S, Len J, et al. Fractal analysis on root systems of rice plants in response to drought stress. Environmental and Experimental Botany, 2009, 65(2/3): 338-344. [7] Timothy S G, Brown L K, Li R, et al. Understanding the genetic control and physiological traits associated with rhizosheath production by barley. New Phytologist, 2014, 203(1): 195-205. [8] Pascal B, Eva K, Peter V, et al. Water percolation through the root-soil interface. Advances in Water Resources, 2016, 95: 190-198. [9] Price S R.The roots of some North African desert grasses. New Phytologist, 1911, 10(1): 328-340. [10] Zhang X D, Wang Z W, Han Q F, et al. Effects of water stress on the root structure and physiological characteristics of early-stage maize. Acta Ecologica Sinica, 2016, 36(10): 2969-2977. 张旭东, 王智威, 韩清芳, 等. 玉米早期根系构型及其生理特性对土壤水分的响应. 生态学报, 2016, 36(10): 2969-2977. [11] Chen W L, Li J, Zhu H H, et al. A review of the regulation of plant root system architecture by rhizosphere microorganisms. Acta Ecologica Sinica, 2016, 36(17): 5285-5297. 陈伟立, 李娟, 朱红惠, 等. 根际微生物调控植物根系构型研究进展. 生态学报, 2016, 36(17): 5285-5297. [12] Moreno E, Facundo R B, Ferrara G M J, et al. Role of root-hairs and hyphae in adhesion of sand particles. Soil Biology and Biochemistry, 2007, 39(10): 2520-2526. [13] Yusuke U, Kenzo O, Jun W, et al. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environmental Microbiology, 2010, 7(3): 396-404. [14] An J, Wu N, Zhang Y M.Effects of sand sterilization on seed germination, seedling growth and rhizosheath formation of Stipagrostis pennata. Journal of Desert Research, 2016, 36(2): 399-405. 安晶, 吴楠, 张元明. 沙土灭菌对羽毛针禾(Stipagrostis pennata)种子萌发、幼苗生长及根鞘形成的影响. 中国沙漠, 2016, 36(2): 399-405. [15] Mahmood T, Mehnaz F, Fleischmann R, et al. Soil sterilization effects on root growth and formation of rhizosheaths in wheat seedlings. Pedobiologia, 2014, 57(3): 123-130. [16] Cai L B, Zhi L.A taxonomical study on the genus Kengyilia Yen et J. L. Yang. Acta Phytotaxonomica Sinica, 1999, 37(5): 451-467. 蔡联柄, 智力. 以礼草属的分类研究. 植物分类学报, 1999, 37(5): 451-467. [17] Burton A J, Pregitzer K S.Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine. Tree Physiology, 2003, 23(4): 273. [18] Shan L S, Li Y, Duan Y N, et al. Response of root morphology and water use efficiency of Reaumuria soongorica to soil water change. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(6): 1198-1205. 单立山, 李毅, 段雅楠, 等. 红砂幼苗根系形态特征和水分利用效率对土壤水分变化的响应. 西北植物学报, 2014, 34(6): 1198-1205. [19] Pang J Y, Megan H R, Kadambot H M, et al. Unwrapping the rhizosheath. Plant and Soil, 2017, 418(1/2): 129-139. [20] Chen X X, Ding Q S, Li Y N, et al. Three dimensional fractal characteristics of wheat root system for rice-wheat rotation in Southern China. Scientia Agricultura Sinica, 2017, 50(3): 451-460. 陈信信, 丁启朔, 李毅念, 等. 南方稻麦轮作系统下小麦根系的三维分形特征. 中国农业科学, 2017, 50(3): 451-460. [21] Li S, Zhao G J, Xu W Z, et al. Responses of Bothriochloa ischaemum root systems to changes in soil water conditions. Acta Prataculturae Sinica, 2016, 25(2): 169-177. 李帅, 赵国靖, 徐伟洲, 等. 白羊草根系形态特征对土壤水分阶段变化的响应. 草业学报, 2016, 25(2): 169-177. [22] Yu H J, Zhou X G, Guan S N, et al. Effect of nutrient solutions with different nitrogen levels on the growth and root morphology of cucumber seedlings in sand culture. Northern Horticulture, 2016, (7): 17-22. 于洪杰, 周新刚, 关颂娜, 等. 不同氮水平营养液对砂培黄瓜幼苗生长及根系形态的影响. 北方园艺, 2016, (7): 17-22. [23] Zemrany H E, Czarnes S, Hallett P D, et al. Early changes in root characteristics of maize (Zea mays) following seed inoculation with the PGPR Azospirillum lipoferum CRT1. Plant and Soil, 2007, 291(1/2): 109-118. [24] German M A, Burdman S, Okon Y, et al. Effects of Azospirillum brasilense on root morphology of common bean (Phaseolus vulgaris L.) under different water regimes. Biology and Fertility of Soils, 2000, 32(3): 259-264. [25] Fusconi A.Regulation of root morphogenesis in arbuscular mycorrhizae: What role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Annals of Botany, 2014, 113(1): 19-33. [26] Su J S, Zhao J, Jing G H, et al. Root pattern of Stipa plants in semiarid grassland after long-term grazing exclusion. Acta Ecologica Sinica, 2017, 37(19): 286-295. 苏纪帅, 赵洁, 井光花, 等. 半干旱草地长期封育进程中针茅植物根系格局变化特征. 生态学报, 2017, 37(19): 286-295. [27] Ruan W B, Wang J G, Zhang F S, et al. Effect of sterilization with CH3Br on root growth of soybean seedlings. Acta Ecologica Sinica, 2001, 21(5): 759-764. 阮维斌, 王敬国, 张福锁, 等. 溴甲烷土壤灭菌对大豆苗期根系生长的影响. 生态学报, 2001, 21(5): 759-764. [28] Qiu D, Wu N, Zhang Y M, et al. Ecological regulation of Stipagrostis pennata by rhizosheath microhabitat. Journal of Desert Research, 2012, 32(6): 1647-1654. 邱东, 吴楠, 张元明, 等. 根鞘微生境对羽毛针禾沙生适应性的生态调节. 中国沙漠, 2012, 32(6): 1647-1654. [29] North G B, Nobel P S.Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths. Plant and Soil, 1997, 191(2): 249-258. [30] Mccully M E, Canny M J.Formation and stabilization of rhizosheaths of Zea mays L.: Effect of soil water content. Plant Physiology, 1994, 106(1): 179-186. |