[1] Ma B Y. Research advances in stress physiological adaptation of perennial ryegrass. Journal of Biology, 2010, 27(2): 58-61. 马博英. 多年生黑麦草的逆境生理研究进展. 生物学杂志, 2010, 27(2): 58-61. [2] Shen Z F. Review on disease and pest control of white clover. Shaanxi Journal of Agricultural Sciences, 2012, 58(3): 131-133. 沈忠福. 白三叶草病虫害防治综述. 陕西农业科学, 2012, 58(3) : 131-133. [3] Yu Y W, Xu Z, Miao J X, et al. The growing characteristics of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and their coexisted behave performance in mixed pasture. Acta Prataculturae Sinica, 2002, 11(3): 34-39. 于应文, 徐震, 苗建勋, 等. 混播草地中多年生黑麦草与白三叶的生长特性及其共存表现. 草业学报, 2002, 11(3): 34-39. [4] Smith S E, Read D J. Mycorrhizal symbiosis (the 3rd edtion). New York, London: Academic, 2008. [5] Zhang W Z, Gu L J, Duan T Y. Research progress on the mechanism of AM fungi for improving plant stress resistance. Pratacultural Science, 2018, 35(3): 491-507. 张伟珍, 古丽君, 段廷玉. AM真菌提高植物抗逆性的机制. 草业科学, 2018, 35(3): 491-507. [6] Lei Y, Wu S L, Hao Z P, et al. Development of arbuscular mycorrhizal hyphal networks mediated by different plants and the time effects. Acta Botanica Boreali-Occidentalia Sinica, 2013, 33(1): 154-161. 雷垚, 伍松林, 郝志鹏, 等. 丛枝菌根根外菌丝网络形成过程中的时间效应及植物介导作用. 西北植物学报, 2013, 33(1): 154-161. [7] Voets L, Providencia I E, Declerck S. Glomeraceae and Gigasporaceae differ in their ability to form mycelium hyphal networks. New Phytologist, 2006, 172(2): 185-188. [8] Kytoviita M M, Vestberg M, Tuomi J. A test of mutual aid in common mycorrhizal network: Established vegetation negates mycorrhizal benefit in seedlings. Ecology, 2000, 84(4): 898-906. [9] Kathryn B, Jeffrey D, Weidenhamer , et al. Fungal superhighways: Do common mycorrhizal networks enhance below ground communication. Trends in Plant Science, 2012, 17(11): 633-637. [10] He Y J, Cornelissen J H C, Wang P P, et al. Nitrogen transfer from one plant to another depends on plant biomass production between conspecific and heterospecific species via a common arbuscular mycorrhizal network. Environmental Science and Pollution Research, 2019, 26(9): 8828-8837. [11] Heijden M G. Ecology underground networking. Science, 2016, 352: 290-291. [12] Zdenka B, Lucy G, Toby J A, et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters, 2013, 16(7): 835-843. [13] Zhang Y C, Liu C Y, Wu Q S. Mycorrhiza and common mycorrhizal network regulate the production of signal substances in trifoliate orange(Poncirus trifoliata). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45(1): 43-49. [14] Wu Q S, Zhang Y C, Zhang Z Z, et al. Underground communication of root hormones by common mycorrhizal network between trifoliate orange and white clover. Archives of Agronomy and Soil Science, 2017, 63(9): 1187-1197. [15] Awaydul A, Zhu W Y, Yuan Y G, et al. Common mycorrhizal networks influence the distribution of mineral nutrientsbetween an invasive plant, Solidago canadensis, and a native plant, Kummerowa striata. Mycorrhiza, 2019, 29(1): 29-38. [16] Xie L J, Song Y Y, Zeng R S, et al. Disease resistance signal transfer between roots of different tomato plants through common arbuscular mycorrhiza networks. Chinese Journal of Applied Ecology, 2012, 23(5): 1145-1152. 谢丽君, 宋圆圆, 曾任森, 等. 丛枝菌根菌丝桥介导的番茄植株根系间抗病信号的传递. 应用生态学报, 2012, 23(5): 1145-1152. [17] Zhao X, Zeng G P, Yang P, et al. Effects of arbuscular mycorrhizal fungi on growth and active constituents of Carthamus tinctorius. Arid Zone Research, 2019, 36(4): 935-942. 赵祥, 曾广萍, 杨盼, 等. AM真菌对红花生长及其有效成分的影响. 干旱区研究, 2019, 36(4): 935-942. [18] Huang X H, Chen D J, Feng D L. The effects of arbuscular mycorrhiza fungi on the growth of mulberry in different nursery substrates. Journal of Nanjing Forestry University (Natural Science Edition), 2019, 43(3): 9-16. 黄小辉, 陈道静, 冯大兰. 不同基质条件下丛枝菌根真菌对桑树生长的影响. 南京林业大学学报(自然科学版), 2019, 43(3): 9-16. [19] Han J, Zhang X Q, Zhao J L. Effect of arbuscular mycorrhizal fungi on metabolic characteristics of microbial community in Solanum nigrum rhizosphere soil with lead stress. Chinese Journal of Eco-Agriculture, 2019, 27(4): 545-553. 韩娟, 张向前, 赵金莉. 铅胁迫下接种AM真菌对龙葵根际土壤微生物群落代谢特征的影响. 中国生态农业学报, 2019, 27(4): 545-553. [20] Millanes A M, Fontaniella B, Legaz M E, et al. Glycoproteins from sugarcane plants regulate cell polarity of Ustilago scitamine teliospores. Journal of Plant Physiology, 2005, 162(3): 253-265. [21] Xin Z Y, Zhou X, Zhang N G. The development of an indirect ELISA for jasmonic acid. Journal of Nanjing Agricultural University, 1998, (4): 22-26. 辛泽毓, 周燮, 张能刚. 茉莉酸酶联免疫检测法(ELISA)的建立. 南京农业大学学报, 1998, (4): 22-26. [22] Brundrett M C, Abbott L K. Mycorrhizal fungus propagules in the jarrah forest: 1. Seasonal study of inoculum levels. New Phytologist, 1994, 127(3): 539-546. [23] Weremijewicz J, Sternberg L D L O, Janos D P. Arbuscular common mycorrhizal networks mediate intra- and interspecific interactions of two prairie grasses. Mycorrhiza, 2018, 28(1): 71-83. [24] Wang P P. Influence of arbuscular mycorrhizal fungi on the nutrient transfer and distribution between individual plantsin karst community. Guiyang: Guizhou University, 2015. 王鹏鹏. AM真菌影响喀斯特植物群落个体间养分转移与分配. 贵阳: 贵州大学, 2015. [25] Walder F, Niemann H, Natarajan M, et al. Mycorrhizal networks: Common goods of plants shared under unequal terms of trade. Plant Physiology, 2012, 159(2): 789-797. [26] Dong Y, Zhu Y G, Smith F A, et al. Arbuscular mycorrhiza enhanced arsenic resistance of both white clover (Trifolium repens Linn.) and ryegrass (Lolium perenne L.) plants in an arsenic-contaminated soil. Environmental Pollution, 2008, 15(1): 174-181. [27] Zhu Y G, Laidlaw A S, Christie P, et al. The specificity of arbuscular mycorrhizal fungi in perennial ryegrass-white clover pasture. Agriculture Ecosystems & Environment, 2000, 77(3): 211-218. [28] Xu L, Chen Z H, Yan A F, et al. Summarization of resistance mechanism of plant to disease and adversity. Acta Agriculturae Jiangxi, 2012, (3): 94-97, 111. 徐玲, 陈自宏, 晏爱芬, 等. 植物抗病抗逆机理的研究概述. 江西农业学报, 2012, (3): 94-97, 111. [29] KemPema L A, Cui X P, Holzer F M, et al. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiology, 2007, 143(2): 849-865. [30] Zhang Y C, Liu L P, Zou Y N, et al. Responses of signal substances to canker in trifoliate orange roots through mycorrhizal hyphal bridge. Mycosystema, 2017, 36(7): 1028-1036. 张艺灿, 刘利平, 邹英宁, 等. 菌丝桥介入枳根系间抗溃疡病的信号物质响应. 菌物学报, 2017, 36(7): 1028-1036. [31] Wang B, Zhang J Z, Liu X, et al. Recent advances in the study of signal substances in plants induced by arbuscular myorrhizal fungi. Microbiology China, 2010, 37(2): 263-268. 王彬, 张金政, 刘新, 等. 丛枝菌根真菌诱导植物信号物质研究进展. 微生物学通报, 2010, 37(2): 263-268. |