[1] Lim H, Tanaka A, Tanaka R, et al. In vitro enzymatic activity assays implicate the existence of the chlorophyll cycle in chlorophyll b-containing cyanobacteria. Plant and Cell Physiology, 2019, 60(12): 2672-2683. [2] Sakuraba Y, Tanaka R, Yamasato A, et al. Determination of a chloroplast degron in the regulatory domain of chlorophyllide a oxygenase. Journal of Biological Chemistry, 2009, 284(52): 36689-36699. [3] Beale S I. Green genes gleaned. Trends in Plant Science, 2005, 10(7): 309-312. [4] Tanaka A, Ito H, Tanaka R, et al. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(21): 12719-12723. [5] Oster U, Tanaka R, Tanaka A, et al. Cloning and functional expression of the gene encoding the key enzyme for chlorophyll b biosynthesis (CAO) from Arabidopsis thaliana. The Plant Journal, 2000, 21(3): 305-310. [6] Oster U, Bauer C E, Rüdiger W. Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. Journal of Biological Chemistry, 1997, 272(15): 9671-9676. [7] Espineda C E, Linford A S, Devine D, et al. The AtCAO gene, encoding chlorophyll a oxygenase, is required for chlorophyll b synthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(18): 10507-10511. [8] Lee S, Kim J H, Yoo E S, et al. Differential regulation of chlorophyll a oxygenase genes in rice. Plant Molecular Biology, 2005, 57(6): 805-818. [9] Mueller A H, Dockter C, Gough S P, et al. Characterization of mutations in barley fch2 encoding chlorophyllide a oxygenase. Plant and Cell Physiology, 2012, 53(7): 1232-1246. [10] Jiang K Y, Zhou M B, Yang H Y, et al. Cloning and functional characterization of PjCAO gene involved in chlorophyll b biosynthesis in Pseudosasa japonica cv. Akebonosuji. Trees-Structure and Function, 2016, 30(4): 1303-1314. [11] Kunugi M, Takabayashi A, Tanaka A. Evolutionary changes in chlorophyllide a oxygenase (CAO) structure contribute to the acquisition of a new light-harvesting complex in micromonas. Journal of Biological Chemistry, 2013, 288(27): 19330-19341. [12] Liu M, Lu Y, Wang S, et al. Characterization of the leaf color mutant hy and identification of the mutated gene in Chinese cabbage. Journal of the American Society for Horticultural Science, 2018, 143(5): 363-369. [13] Pattanayak G K, Biswal A K, Reddy V S, et al. Light-dependent regulation of chlorophyll b biosynthesis in chlorophyllide a oxygenase overexpressing tobacco plants. Biochemical and Biophysical Research Communications, 2005, 326(2): 466-471. [14] Reinbothe C, Bartsch S, Eggink L L, et al. A role for chlorophyllide a oxygenase in the regulated import and stabilization of light-harvesting chlorophyll a/b proteins. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(12): 4777-4782. [15] Khumaida N, Kisman K, Sopandie D. Cloning and characterization of partial chlorophyll a oxygenase (CAO) gene involved in soybean shade tolerance mechanism. Journal of Tropical Crop Science, 2015, 2(2): 1-4. [16] Wang Y X, Hu Y, Zhu Y F, et al. Transcriptional and physiological analyses of short-term iron deficiency response in apple seedlings provide insight into the regulation involved in photosynthesis. BMC Genomics, 2018, 19(1): 461. [17] Biswal A K, Pattanayak G K, Pandey S S, et al. Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. Plant Physiology, 2012, 159(1): 433-449. [18] Yang Y, Xu J, Huang L, et al. PGL, encoding chlorophyllide a oxygenase 1, impacts leaf senescence and indirectly affects grain yield and quality in rice. Journal of Experimental Botany, 2016, 67(5): 1297-1310. [19] Cao L Y, Qian Q, Zhu X D, et al. Breeding of a photo-thermo sensitive genic male sterile indica rice Zhongzi S with a purple-leaf marker and the hoterosis of its hybrid rice produced with it. Acta Agronomica Sinica, 1999, 25(1): 44-49. 曹立勇, 钱前, 朱旭东, 等. 紫叶标记籼型光-温敏核不育系中紫S的选育及其配组的杂种优势. 作物学报, 1999, 25(1): 44-49. [20] Zhou C, Han L, Pislariu C, et al. From model to crop: Functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiology, 2011, 157(3): 1483-1496. [21] Clough S J, Bent A F. Floral dip: A simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 1998, 16(6): 735-743. [22] Yoo S D, Cho Y H, Sheen J. Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2007, 2(7): 1565-1572. [23] Lichtenthaler H K, Buschmann C. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 2001, 1(1): F4.3.1-F4.3.8. [24] Yamasato A, Nagata N, Tanaka R, et al. The N-terminal domain of chlorophyllide a oxygenase confers protein instability in response to chlorophyll b accumulation in Arabidopsis. Plant Cell, 2005, 17(5): 1585-1597. [25] Sakuraba Y, Yamasato A, Tanaka R, et al. Analysis of the N-terminal domain of chlorophyllide a oxygenase by random mutagenesis. Photosynthesis. Dordrecht: Energy from the Sun. Springer, 2008: 1043-1046. [26] Sakuraba Y, Ryamasato T. Determination of a chloroplast degron in the regulatory domain of chlorophyllide a oxygenase. Journal of Biological Chemistry, 2009, 284(52): 36689. [27] Sakuraba Y, Yamasato A, Tanaka R, et al. Functional analysis of N-terminal domains of Arabidopsis chlorophyllide a oxygenase. Plant Physiology Biochemistry, 2007, 45(10/11): 740-749. [28] Preiss S, Thornber J P. Stability of the apoproteins of light-harvesting complex I and II during biogenesis of thylakoids in the chlorophyll b-less barley mutant chlorina f2. Plant Physiology, 1995, 107(3): 709-717. [29] Covington M F, Maloof J N, Marty S, et al. Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biology, 2008, 9(8): R13. [30] Harmer S L, Hogenesch J B, Straume M, et al. Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science, 2000, 290: 2110-2113. [31] Li H S, Xu Y. Effect of light on synthesis of chlorophylls. Modern Agricultural Science and Technology, 2014, (21): 161-164. 李汉生, 徐永. 光照对叶绿素合成的影响. 现代农业科技, 2014, (21): 161-164. [32] Wasternack C. Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 2007, 100(4): 681-697. [33] Wang P R, Zhang F T, Gao J X, et al. An overview of chlorophyll biosynthesis in higher plants. Acta Botanica Boreali-Occidentalia Sinica, 2009, 29(3): 629-636. 王平荣, 张帆涛, 高家旭, 等. 高等植物叶绿素生物合成的研究进展. 西北植物学报, 2009, 29(3): 629-636. [34] Liang S, Zhao G X, Zhu X C. Hyperspectral estimation models of chlorophyll content in apple leaves. Spectroscopy and Spectral Analysis, 2012, 32(5): 1367-1370. 梁爽, 赵庚星, 朱西存. 苹果树叶片叶绿素含量高光谱估测模型研究. 光谱学与光谱分析, 2012, 32(5): 1367-1370. |