[1] Xiong L, Zhu J K. Molecular and genetic aspects of plant responses to osmotic stress. Plant, Cell and Environment, 2002, 25(2): 131-139. [2] Yue L J, Cui Y N, Yuan K, et al. The osmotic adjustment in Pugionium cornutum subjected to salt stress. Plant Physiology Journal, 2016, 52(4): 569-574. 岳利军, 崔彦农, 袁坤, 等. NaCl胁迫下沙芥的渗透调节作用. 植物生理学报, 2016, 52(4): 569-574. [3] Vurukonda S S K P, Vardharajula S, Shrivastava M, et al. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 2016, 184: 13-24. [4] Martínez J P, Kinet J M, Bajji M, et al. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. Journal of Experimental Botany, 2005, 56(419): 2421-2431. [5] Carmo-Silva A E, Gore M A, Andrade-Sanchez P, et al. Decreased CO2 availability and inactivation of rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany, 2012, 83: 1-11. [6] Shabala S, Bose J, Hedrich R. Salt bladders: Do they matter? Trends in Plant Science, 2014, 19(11): 687-691. [7] Oh D H, Barkla B J, Vera-Estrella R, et al. Cell type-specific responses to salinity-the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum. New Phytologist, 2015, 207(3): 627-644. [8] Nemat Alla M M, Khedr A H A, Serag M M, et al. Regulation of metabolomics in Atriplex halimus growth under salt and drought stress. Plant Growth Regulation, 2012, 67: 281-304. [9] Wang Z X, Zhang S Z. Research progress of drought resistance and drought-resistant improvement in crop. Crops, 2014, 2: 26-31. 王尊欣, 张树珍. 作物抗旱性及抗旱育种研究进展. 作物杂志, 2014, 2: 26-31. [10] Hao G Y, Lucero M E, Sanderson S C, et al. Polyploidy enhances the occupation of heterogeneous environments through hydraulic related trade-offs in Atriplex canescens (Chenopodiaceae). New Phytologist, 2013, 197(3): 970-978. [11] Kong D S. Morphological characteristics and eco-physiological adaptability of Atriplex canescens: A review. Chinese Journal of Ecology, 2013, 32(1): 210-216. 孔东升. 四翅滨藜形态特征及生理生态适应性. 生态学杂志, 2013, 32(1): 210-216. [12] Glenn E, Pfister R, Brown J J, et al. Na and K accumulation and salt tolerance of Atriplex canescens (Chenopodiaceae) genotypes. American Journal of Botany, 1996, 83(8): 997-1005. [13] Benzarti M, Ben Rejeb K, Debez A, et al. Environmental and economical opportunities for the valorisation of the genus Atriplex: New insights//Hakeem K, Ahmad P, Ozturk M. Crop improvement: New approaches and modern techniques. New York, USA: Springer, 2013: 441-457. [14] Kiani-Pouya A, Roessner U, Jayasinghe N S, et al. Epidermal bladder cells confer salinity stress tolerance in the halophyte quinoa and Atriplex species. Plant, Cell and Environment, 2017, 40: 1900-1915. [15] Pan Y Q, Guo H, Wang S M, et al. The photosynthesis, Na+/K+ homeostasis and osmotic adjustment of Atriplex canescens in response to salinity. Frontiers in Plant Science, 2016, (7): 848. [16] Ma Q, Yue L J, Zhang J L, et al. Sodium chloride improves photosynthesis and water status in the succulent xerophyte Zygophyllum xanthoxylum. Tree Physiology, 2012, 32(1): 4-13. [17] Tsutsumi K, Yamada N, Chaum S, et al. Differential accumulation of glycinebetaine and choline monooxygenase in bladder hairs and lamina leaves of Atriplex gmelini under high salinity. Journal of Plant Physiology, 2015, 176: 101-107. [18] Wang S, Wan C, Wang Y, et al. The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China. Journal of Arid Environments, 2004, 56(3): 525-539. [19] Guerrier G. Fluxes of Na+, K+ and Cl-, and osmotic adjustment in Lycopersicon pimpinellifolium and L. esculentum during short- and long-term exposures to NaCl. Physiologia Plantarum, 1996, 97(3): 583-591. [20] Wang Q Z, Liu Q, Gao Y N, et al. Review on the mechanisms of the response to salinity-alkalinity stress in plants. Acta Ecologica Sinica, 2017, 37(16): 5565-5577. 王佺珍, 刘倩, 高娅妮, 等. 植物对盐碱胁迫的响应机制研究进展. 生态学报, 2017, 37(16): 5565-5577. [21] Shabala S, Mackay A. Ion transport in halophytes. Advances in Botanical Research, 2011, 57: 151-199. [22] Cui Y N, Xia Z R, Ma Q, et al. The synergistic effects of sodium and potassium on the xerophyte Apocynum venetum in response to drought stress. Plant Physiology and Biochemistry, 2019, 135: 489-498. [23] He F L, Bao A K, Wang S M, et al. NaCl stimulates growth and alleviates drought stress the salt-secreting xerophyte Reaumuria soongorica. Environmental and Experimental Botany, 2019, 162: 433-443. [24] Jupa R, Plichta R, Paschová Z, et al. Mechanisms underlying the long-term survival of the monocot Dracaena marginata under drought conditions. Tree Physiology, 2017, 37(9): 1182-1197. [25] Giorio P, Sorrentino G, D'Andria R. Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environmental and Experimental Botany, 1999, 42(2): 95-104. [26] Hedrich R, Shabala S. Stomata in a saline world. Current Opinion in Plant Biology, 2018, 46: 87-95. [27] Ache P, Bauer H, Kollist H, et al. Stomatal action directly feeds back on leaf turgor: New insights into the regulation of the plant water status from non-invasive pressure probe measurements. The Plant Journal, 2010, 62(6): 1072-1082. [28] Kronzucker H J, Coskun D, Schulze L M, et al. Sodium as nutrient and toxicant. Plant and Soil, 2013, 369: 1-23. [29] Guo H, Zhang L, Cui Y N, et al. Identification of candidate genes related to salt tolerance of the secretohalophyte Atriplex canescens by transcriptomic analysis. BMC Plant Biology, 2019, 19: 213. [30] Flowers T J, Munns R, Colmer T D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 2015, 115(3): 419-431. [31] Böhm J, Messerer M, Müller H M, et al. Understanding the molecular basis of salt sequestration in epidermal bladder cells of Chenopodium quinoa. Current Biology, 2018, 28: 1-11. [32] Zhang L, Guo H, Bao A K. The unique salt-secreting structures of halophytes: Salt bladders. Plant Physiology Journal, 2019, 55(3): 232-240. 张乐, 郭欢, 包爱科. 盐生植物的独特泌盐结构—盐囊泡. 植物生理学报, 2019, 55(3): 232-240. [33] Benito B, Haro R, Amtmann A, et al. The twins K+ and Na+ in plants. Journal of Plant Physiology, 2014, 171(9): 723-731. [34] Martineau E, Domec J C, Bosc A, et al. The effects of potassium nutrition on water use in field-grown maize (Zea mays L.). Environmental and Experimental Botany, 2017, 134: 62-71. [35] Hessini K, Martínez J P, Gandour M, et al. Effect of water stress on growth, osmotic adjustment, cell wall elasticity and water-use efficiency in Spartina alterniflora. Environmental and Experimental Botany, 2009, 67(2): 312-319. [36] Ming D F, Pei Z F, Naeem M S, et al. Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. Journal of Agronomy and Crop Science, 2012, 198: 14-26. [37] Wang B, Chen J, Chen L, et al. Combined drought and heat stress in Camellia oleifera cultivars: Leaf characteristics, soluble sugar and protein contents, and rubisco gene expression. Trees, 2015, 29(5): 1483-1492. |