Acta Prataculturae Sinica ›› 2021, Vol. 30 ›› Issue (6): 28-39.DOI: 10.11686/cyxb2020349
Previous Articles Next Articles
Xiao-e LIU(), Shi-ping SU(), Yi LI
Received:
2020-07-20
Revised:
2020-09-24
Online:
2021-05-21
Published:
2021-05-21
Contact:
Shi-ping SU
Xiao-e LIU, Shi-ping SU, Yi LI. Soil physical and chemical properties under four typical shrubs found on the Northern and Southern Mountains of Lanzhou City, Northwest China[J]. Acta Prataculturae Sinica, 2021, 30(6): 28-39.
灌丛类型 Shrub types | 盖度 Coverage (%) | 海拔 Altitude (m) | 林龄 Age (Year) | 平均树高 Mean height (m) | 林分密度 Stand density (Tree·hm-2) | 土壤类型 Soil type |
---|---|---|---|---|---|---|
千头柏P.orientalis cv. sieboldii (PO) | 85 | 1813 | 30 | 6.02 | 2977 | 灰钙土Sierozem |
红砂R. songarica (RS) | / | 1801 | 25 | 0.25 | 3500 | 灰钙土Sierozem |
红花锦鸡儿C. rosea (CR) | 95 | 1920 | 30 | 0.75 | 45000 | 灰钙土Sierozem |
柽柳T. chinensis (TC) | 55 | 1825 | 30 | 2.28 | 3600 | 灰钙土Sierozem |
Table 1 Basic condition of different shrub types
灌丛类型 Shrub types | 盖度 Coverage (%) | 海拔 Altitude (m) | 林龄 Age (Year) | 平均树高 Mean height (m) | 林分密度 Stand density (Tree·hm-2) | 土壤类型 Soil type |
---|---|---|---|---|---|---|
千头柏P.orientalis cv. sieboldii (PO) | 85 | 1813 | 30 | 6.02 | 2977 | 灰钙土Sierozem |
红砂R. songarica (RS) | / | 1801 | 25 | 0.25 | 3500 | 灰钙土Sierozem |
红花锦鸡儿C. rosea (CR) | 95 | 1920 | 30 | 0.75 | 45000 | 灰钙土Sierozem |
柽柳T. chinensis (TC) | 55 | 1825 | 30 | 2.28 | 3600 | 灰钙土Sierozem |
灌丛 类型 Shrub type | 土层厚度 Soil layer (cm) | 土壤容重 Bulk density (g·cm-3) | 最大持水量 Maximum water capacity (%) | 毛管持水量 Capillary water capacity (%) | 田间持水量 Field water capacity (%) | 毛管孔隙度 Capillary porosity (%) | 非毛管孔隙度 Non-capillary porosity (%) | 总孔隙度 Total porosity (%) | 自然水分含量 Nature moisture content (%) |
---|---|---|---|---|---|---|---|---|---|
CR | 0~20 | 0.98±0.02b | 57.49±2.27a | 49.67±2.06a | 40.98±1.77a | 48.65±1.33b | 12.94±0.88a | 61.59±0.47a | 9.30±0.18a |
20~40 | 1.14±0.00a | 54.48±0.38ab | 48.53±0.65a | 39.86±2.36a | 55.24±0.74a | 1.15±0.75b | 56.39±0.04b | 8.85±0.44ab | |
40~60 | 1.10±0.01a | 51.92±0.23b | 48.68±0.30a | 40.20±1.31a | 53.45±0.85a | 4.28±1.29b | 57.73±0.46b | 8.06±0.24bc | |
60~80 | 1.10±0.03a | 51.91±1.55b | 48.83±1.10a | 41.79±1.50a | 53.75±1.07a | 3.84±1.90b | 57.59±1.06b | 6.98±0.47c | |
TC | 0~20 | 1.29±0.03b | 39.42±1.30a | 36.99±1.24a | 28.30±1.88a | 47.76±0.53a | 3.51±0.49ab | 51.27±0.99a | 7.23±0.52a |
20~40 | 1.39±0.02a | 37.92±1.82a | 33.89±0.35a | 26.98±1.61a | 46.93±0.33a | 1.31±0.87b | 48.24±0.61b | 6.65±0.16ab | |
40~60 | 1.43±0.01a | 32.13±1.11b | 28.97±0.29b | 20.14±0.69b | 41.45±0.44b | 5.30±0.57a | 46.75±0.23b | 5.59±0.41b | |
60~80 | 1.30±0.03b | 38.33±1.40c | 35.55±1.42a | 24.26±0.80a | 46.29±1.23a | 4.64±1.28a | 50.93±0.92a | 5.86±0.44ab | |
RS | 0~20 | 1.09±0.03b | 52.95±2.21a | 45.03±1.53a | 37.03±1.59a | 48.90±1.27a | 9.16±1.88a | 58.06±1.11a | 6.00±0.13a |
20~40 | 1.16±0.01b | 47.24±1.62b | 44.18±1.52a | 33.95±3.64ab | 51.08±1.25a | 4.69±0.85b | 55.77±0.40a | 4.91±0.46b | |
40~60 | 1.17±0.01b | 46.67±0.89b | 43.62±1.10a | 32.30±0.86ab | 50.79±0.95a | 4.72±0.72b | 55.51±0.27a | 3.73±0.32c | |
60~80 | 1.29±0.03a | 40.45±1.61c | 38.06±1.88b | 29.41±0.82b | 49.04±1.33a | 2.30±0.42b | 51.34±0.96b | 4.30±0.26bc | |
PO | 0~20 | 1.24±0.03c | 50.70±1.81a | 37.85±1.71a | 31.83±1.39a | 46.67±0.90a | 6.49±0.24a | 53.16±1.07a | 7.38±0.41a |
20~40 | 1.30±0.06bc | 42.57±1.69b | 35.67±2.45ab | 26.84±1.93b | 45.92±1.18ab | 5.29±0.68a | 51.21±1.86ab | 6.27±0.56a | |
40~60 | 1.42±0.05ab | 36.74±0.57c | 29.53±2.59bc | 23.33±0.63bc | 41.79±2.09bc | 5.17±0.68a | 46.96±1.67bc | 6.17±0.54a | |
60~80 | 1.48±0.04a | 34.34±2.34c | 27.38±1.38c | 21.60±0.62c | 40.34±0.90c | 4.87±0.62a | 45.21±1.37c | 4.01±0.97b | |
土层 Soil layer | 0~20 | 1.15±0.01a | 50.14±0.19a | 42.38±1.02a | 34.54±0.31a | 48.00±0.61ab | 8.03±0.25a | 56.03±0.39a | 7.48±0.64a |
20~40 | 1.25±0.01b | 45.55±0.41b | 40.57±0.52ab | 31.91±1.22b | 49.79±0.46a | 3.11±0.35c | 52.90±0.26b | 6.67±0.14b | |
40~60 | 1.28±0.02b | 41.87±0.39c | 37.70±0.78b | 28.99±0.20c | 46.87±0.60b | 4.87±0.23b | 51.74±0.49b | 5.89±0.31bc | |
60~80 | 1.29±0.04b | 41.26±1.56c | 37.46±1.30b | 29.27±0.31c | 47.36±0.95b | 3.91±0.40bc | 51.27±0.77b | 5.29±0.34c | |
CR | 0~80 | 1.08±0.01c | 53.95±0.77a | 48.93±0.75a | 40.71±0.42a | 52.77±0.77a | 5.55±0.88a | 58.32±0.28a | 8.30±0.10a |
TC | 0~80 | 1.35±0.01a | 36.95±0.52d | 33.85±0.20c | 24.92±1.02c | 45.61±0.39c | 3.69±0.55a | 49.30±0.17c | 6.33±0.16b |
RS | 0~80 | 1.17±0.01b | 46.82±0.51b | 42.72±0.34b | 33.17±0.96b | 49.96±0.27b | 5.22±0.63a | 55.18±0.43b | 4.74±0.23c |
PO | 0~80 | 1.36±0.03a | 41.08±0.84c | 32.61±1.50c | 25.90±0.25c | 43.68±1.03c | 5.46±0.35a | 49.14±1.11c | 5.96±0.08b |
Table 2 Physical properties of different soil horizons in 4 shrub types (mean±SD)
灌丛 类型 Shrub type | 土层厚度 Soil layer (cm) | 土壤容重 Bulk density (g·cm-3) | 最大持水量 Maximum water capacity (%) | 毛管持水量 Capillary water capacity (%) | 田间持水量 Field water capacity (%) | 毛管孔隙度 Capillary porosity (%) | 非毛管孔隙度 Non-capillary porosity (%) | 总孔隙度 Total porosity (%) | 自然水分含量 Nature moisture content (%) |
---|---|---|---|---|---|---|---|---|---|
CR | 0~20 | 0.98±0.02b | 57.49±2.27a | 49.67±2.06a | 40.98±1.77a | 48.65±1.33b | 12.94±0.88a | 61.59±0.47a | 9.30±0.18a |
20~40 | 1.14±0.00a | 54.48±0.38ab | 48.53±0.65a | 39.86±2.36a | 55.24±0.74a | 1.15±0.75b | 56.39±0.04b | 8.85±0.44ab | |
40~60 | 1.10±0.01a | 51.92±0.23b | 48.68±0.30a | 40.20±1.31a | 53.45±0.85a | 4.28±1.29b | 57.73±0.46b | 8.06±0.24bc | |
60~80 | 1.10±0.03a | 51.91±1.55b | 48.83±1.10a | 41.79±1.50a | 53.75±1.07a | 3.84±1.90b | 57.59±1.06b | 6.98±0.47c | |
TC | 0~20 | 1.29±0.03b | 39.42±1.30a | 36.99±1.24a | 28.30±1.88a | 47.76±0.53a | 3.51±0.49ab | 51.27±0.99a | 7.23±0.52a |
20~40 | 1.39±0.02a | 37.92±1.82a | 33.89±0.35a | 26.98±1.61a | 46.93±0.33a | 1.31±0.87b | 48.24±0.61b | 6.65±0.16ab | |
40~60 | 1.43±0.01a | 32.13±1.11b | 28.97±0.29b | 20.14±0.69b | 41.45±0.44b | 5.30±0.57a | 46.75±0.23b | 5.59±0.41b | |
60~80 | 1.30±0.03b | 38.33±1.40c | 35.55±1.42a | 24.26±0.80a | 46.29±1.23a | 4.64±1.28a | 50.93±0.92a | 5.86±0.44ab | |
RS | 0~20 | 1.09±0.03b | 52.95±2.21a | 45.03±1.53a | 37.03±1.59a | 48.90±1.27a | 9.16±1.88a | 58.06±1.11a | 6.00±0.13a |
20~40 | 1.16±0.01b | 47.24±1.62b | 44.18±1.52a | 33.95±3.64ab | 51.08±1.25a | 4.69±0.85b | 55.77±0.40a | 4.91±0.46b | |
40~60 | 1.17±0.01b | 46.67±0.89b | 43.62±1.10a | 32.30±0.86ab | 50.79±0.95a | 4.72±0.72b | 55.51±0.27a | 3.73±0.32c | |
60~80 | 1.29±0.03a | 40.45±1.61c | 38.06±1.88b | 29.41±0.82b | 49.04±1.33a | 2.30±0.42b | 51.34±0.96b | 4.30±0.26bc | |
PO | 0~20 | 1.24±0.03c | 50.70±1.81a | 37.85±1.71a | 31.83±1.39a | 46.67±0.90a | 6.49±0.24a | 53.16±1.07a | 7.38±0.41a |
20~40 | 1.30±0.06bc | 42.57±1.69b | 35.67±2.45ab | 26.84±1.93b | 45.92±1.18ab | 5.29±0.68a | 51.21±1.86ab | 6.27±0.56a | |
40~60 | 1.42±0.05ab | 36.74±0.57c | 29.53±2.59bc | 23.33±0.63bc | 41.79±2.09bc | 5.17±0.68a | 46.96±1.67bc | 6.17±0.54a | |
60~80 | 1.48±0.04a | 34.34±2.34c | 27.38±1.38c | 21.60±0.62c | 40.34±0.90c | 4.87±0.62a | 45.21±1.37c | 4.01±0.97b | |
土层 Soil layer | 0~20 | 1.15±0.01a | 50.14±0.19a | 42.38±1.02a | 34.54±0.31a | 48.00±0.61ab | 8.03±0.25a | 56.03±0.39a | 7.48±0.64a |
20~40 | 1.25±0.01b | 45.55±0.41b | 40.57±0.52ab | 31.91±1.22b | 49.79±0.46a | 3.11±0.35c | 52.90±0.26b | 6.67±0.14b | |
40~60 | 1.28±0.02b | 41.87±0.39c | 37.70±0.78b | 28.99±0.20c | 46.87±0.60b | 4.87±0.23b | 51.74±0.49b | 5.89±0.31bc | |
60~80 | 1.29±0.04b | 41.26±1.56c | 37.46±1.30b | 29.27±0.31c | 47.36±0.95b | 3.91±0.40bc | 51.27±0.77b | 5.29±0.34c | |
CR | 0~80 | 1.08±0.01c | 53.95±0.77a | 48.93±0.75a | 40.71±0.42a | 52.77±0.77a | 5.55±0.88a | 58.32±0.28a | 8.30±0.10a |
TC | 0~80 | 1.35±0.01a | 36.95±0.52d | 33.85±0.20c | 24.92±1.02c | 45.61±0.39c | 3.69±0.55a | 49.30±0.17c | 6.33±0.16b |
RS | 0~80 | 1.17±0.01b | 46.82±0.51b | 42.72±0.34b | 33.17±0.96b | 49.96±0.27b | 5.22±0.63a | 55.18±0.43b | 4.74±0.23c |
PO | 0~80 | 1.36±0.03a | 41.08±0.84c | 32.61±1.50c | 25.90±0.25c | 43.68±1.03c | 5.46±0.35a | 49.14±1.11c | 5.96±0.08b |
灌丛类型和土层 Shrub types and soil layer | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 无机氮 Mineral nitrogen (mg·kg-1) | 全磷 Total phosphorus (g·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 全钾 Total potassium (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | |
---|---|---|---|---|---|---|---|---|---|
土层 Soil layer | 0~20 cm | 8.14±0.15a | 13.10±0.77a | 0.81±0.11a | 27.47±3.47a | 0.67±0.02a | 16.28±4.00a | 18.07±0.34a | 86.27±0.43a |
20~40 cm | 8.05±0.16a | 8.64±1.03b | 0.63±0.15ab | 20.39±2.30ab | 0.59±0.02ab | 10.97±2.24ab | 17.86±0.27a | 76.46±0.84b | |
40~60 cm | 7.83±0.13a | 6.21±1.04bc | 0.47±0.10ab | 16.49±1.52b | 0.56±0.04b | 5.78±0.85b | 17.67±0.55a | 64.41±1.90c | |
60~80 cm | 7.86±0.12a | 4.67±0.75c | 0.35±0.05b | 13.41±3.25b | 0.57±0.03b | 3.75±0.55b | 17.54±0.51a | 57.10±1.09d | |
灌丛 类型 Shrub types | CR | 7.63±0.03c | 10.21±0.17a | 0.81±0.08a | 25.82±2.45a | 0.56±0.02b | 10.55±0.09b | 16.71±0.52b | 69.57±2.25a |
TC | 8.19±0.04a | 8.88±0.04a | 0.62±0.02b | 20.82±0.14b | 0.63±0.01a | 10.10±0.21b | 18.22±0.33a | 71.18±1.51a | |
RS | 7.94±0.01b | 7.29±0.56b | 0.36±0.04d | 16.23±0.18c | 0.56±0.01b | 12.05±0.55a | 17.69±0.07ab | 71.01±0.86a | |
PO | 8.12±0.12ab | 6.24±0.62b | 0.47±0.01c | 14.90±0.06c | 0.63±0.02a | 4.08±0.10c | 18.52±0.17a | 72.48±1.08a |
Table 3 Chemical properties of different soil layers in 4 shrub types
灌丛类型和土层 Shrub types and soil layer | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total nitrogen (g·kg-1) | 无机氮 Mineral nitrogen (mg·kg-1) | 全磷 Total phosphorus (g·kg-1) | 速效磷 Available phosphorus (mg·kg-1) | 全钾 Total potassium (g·kg-1) | 速效钾 Available potassium (mg·kg-1) | |
---|---|---|---|---|---|---|---|---|---|
土层 Soil layer | 0~20 cm | 8.14±0.15a | 13.10±0.77a | 0.81±0.11a | 27.47±3.47a | 0.67±0.02a | 16.28±4.00a | 18.07±0.34a | 86.27±0.43a |
20~40 cm | 8.05±0.16a | 8.64±1.03b | 0.63±0.15ab | 20.39±2.30ab | 0.59±0.02ab | 10.97±2.24ab | 17.86±0.27a | 76.46±0.84b | |
40~60 cm | 7.83±0.13a | 6.21±1.04bc | 0.47±0.10ab | 16.49±1.52b | 0.56±0.04b | 5.78±0.85b | 17.67±0.55a | 64.41±1.90c | |
60~80 cm | 7.86±0.12a | 4.67±0.75c | 0.35±0.05b | 13.41±3.25b | 0.57±0.03b | 3.75±0.55b | 17.54±0.51a | 57.10±1.09d | |
灌丛 类型 Shrub types | CR | 7.63±0.03c | 10.21±0.17a | 0.81±0.08a | 25.82±2.45a | 0.56±0.02b | 10.55±0.09b | 16.71±0.52b | 69.57±2.25a |
TC | 8.19±0.04a | 8.88±0.04a | 0.62±0.02b | 20.82±0.14b | 0.63±0.01a | 10.10±0.21b | 18.22±0.33a | 71.18±1.51a | |
RS | 7.94±0.01b | 7.29±0.56b | 0.36±0.04d | 16.23±0.18c | 0.56±0.01b | 12.05±0.55a | 17.69±0.07ab | 71.01±0.86a | |
PO | 8.12±0.12ab | 6.24±0.62b | 0.47±0.01c | 14.90±0.06c | 0.63±0.02a | 4.08±0.10c | 18.52±0.17a | 72.48±1.08a |
土壤参数 Soil properties | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X2 | -0.872** | |||||||||||||
X3 | -0.903** | 0.783** | ||||||||||||
X4 | -0.594* | 0.579* | 0.572 | |||||||||||
X5 | 0.537 | -0.623* | -0.556 | -0.164 | ||||||||||
X6 | -0.387 | 0.691* | 0.346 | 0.414 | -0.552 | |||||||||
X7 | 0.729** | -0.787** | -0.675* | -0.634* | 0.605* | -0.507 | ||||||||
X8 | 0.284 | -0.349 | -0.505 | -0.601* | 0.057 | -0.261 | 0.431 | |||||||
X9 | 0.912** | -0.908** | -0.871** | -0.499 | 0.794** | -0.612* | 0.771** | 0.272 | ||||||
X10 | -0.918** | 0.800** | 0.945** | 0.492 | -0.717** | 0.375 | -0.698* | -0.316 | -0.940** | |||||
X11 | -0.909** | 0.904** | 0.888** | 0.580* | -0.764** | 0.631* | -0.752** | -0.324 | -0.989** | 0.947** | ||||
X12 | -0.906** | 0.858** | 0.935** | 0.598* | -0.717** | 0.494 | -0.756** | -0.373 | -0.934** | 0.973** | 0.957** | |||
X13 | -0.866** | 0.883** | 0.854** | 0.612* | -0.735** | 0.709** | -0.689* | -0.348 | -0.956** | 0.896** | 0.983** | 0.925** | ||
X14 | -0.411 | 0.333 | 0.301 | -0.182 | -0.389 | -0.138 | -0.484 | 0.161 | -0.417 | 0.407 | 0.300 | 0.298 | 0.132 | |
X15 | -0.915** | 0.909** | 0.872** | 0.511 | -0.788** | 0.612* | -0.774** | -0.273 | -1.000** | 0.941** | 0.991** | 0.937** | 0.958** | 0.412 |
Table 4 Pearson correlation coefficient among soil physical and chemical properties in 4 shrub types (n=12)
土壤参数 Soil properties | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X2 | -0.872** | |||||||||||||
X3 | -0.903** | 0.783** | ||||||||||||
X4 | -0.594* | 0.579* | 0.572 | |||||||||||
X5 | 0.537 | -0.623* | -0.556 | -0.164 | ||||||||||
X6 | -0.387 | 0.691* | 0.346 | 0.414 | -0.552 | |||||||||
X7 | 0.729** | -0.787** | -0.675* | -0.634* | 0.605* | -0.507 | ||||||||
X8 | 0.284 | -0.349 | -0.505 | -0.601* | 0.057 | -0.261 | 0.431 | |||||||
X9 | 0.912** | -0.908** | -0.871** | -0.499 | 0.794** | -0.612* | 0.771** | 0.272 | ||||||
X10 | -0.918** | 0.800** | 0.945** | 0.492 | -0.717** | 0.375 | -0.698* | -0.316 | -0.940** | |||||
X11 | -0.909** | 0.904** | 0.888** | 0.580* | -0.764** | 0.631* | -0.752** | -0.324 | -0.989** | 0.947** | ||||
X12 | -0.906** | 0.858** | 0.935** | 0.598* | -0.717** | 0.494 | -0.756** | -0.373 | -0.934** | 0.973** | 0.957** | |||
X13 | -0.866** | 0.883** | 0.854** | 0.612* | -0.735** | 0.709** | -0.689* | -0.348 | -0.956** | 0.896** | 0.983** | 0.925** | ||
X14 | -0.411 | 0.333 | 0.301 | -0.182 | -0.389 | -0.138 | -0.484 | 0.161 | -0.417 | 0.407 | 0.300 | 0.298 | 0.132 | |
X15 | -0.915** | 0.909** | 0.872** | 0.511 | -0.788** | 0.612* | -0.774** | -0.273 | -1.000** | 0.941** | 0.991** | 0.937** | 0.958** | 0.412 |
1 | Andrews S, Ditzler C A, Andrews S S. Soil quality: Why and how. Geoderma, 2003, 114(3/4): 145-156. |
2 | Chang H T, Zhao J, Liu J N, et al. Changes in soil physico-chemical properties and related fractal features during conversion of cropland into agroforestry and grassland: A case study of desertified steppe in Ningxia. Acta Prataculturae Sinica, 2019, 28(7): 14-25. |
常海涛, 赵娟, 刘佳楠, 等. 退耕还林与还草对土壤理化性质及分形特征的影响-以宁夏荒漠草原为例. 草业学报, 2019, 28(7): 14-25 | |
3 | Bao H S G W, Zhang W, En H, et al. Soil chemical properties of salix shrubs of different ages in Horgin Sandy Land. Forest Resources Management, 2016(6): 130-136. |
包哈森高娃, 张文, 恩和, 等. 科尔沁沙地不同林龄黄柳灌丛土壤化学性质差异. 森林资源管理, 2016(6): 130-136. | |
4 | Zhu Y X, Meng J H. On the comparion of soil physical characteristics of Cunninghamia lanceolata plantation amongst different age classes. Hebei Journal of Forestry and Orchard Research, 2015, 30(2): 103-107. |
朱艺旋, 孟京辉. 不同发育阶段杉木人工林土壤物理性质对比分析. 河北林果研究, 2015, 30(2): 103-107. | |
5 | Wang Q, Zhang Z Y, Xu X N. Soil properties and water conservation function of different forest types in Dabieshan District, Anhui. Journal of Soil and Water Conservation, 2003, 17(3): 59-62. |
王勤, 张宗应, 徐小牛. 安徽大别山库区不同林分类型的土壤特性及其水源涵养功能. 水土保持学报, 2003, 17(3): 59-62. | |
6 | Zhang J, Liu G B, Xu M X, et al. Soil physical properties of vegetation secondary succession on early shrub stage in Loess Hill Gully. Research of Soil and Water Conservation, 2008, 15(4): 105-108, 113. |
张健, 刘国彬, 许明祥, 等. 黄土丘陵区植被次生演替灌木初期土壤物理性质特征. 水土保持研究, 2008, 15(4): 105-108, 113. | |
7 | Natalia V L, Elena V T, Maria A D. Associations between forest vegetation and the fertility of soil organic horizons in Northwestern Russia. Forest Ecosystems, 2019, 6(34): 1-19. |
8 | Xu J F, Ma H M, Zhang J Q, et al. The flora characteristic of seed plants in the Southern and Northern Mountains of Lanzhou. Pratacultural Science, 2016, 33(3): 408-423. |
许金凤, 马红梅, 张建全, 等. 兰州南北两山种子植物区系. 草业科学, 2016, 33(3): 408-423. | |
9 | Zhao K C, Qu L B. Strategy of vegetation restoration in Lanzhou north-south mountains. Journal of Desert Research, 2006, 26(3): 493-497. |
赵克昌, 屈连宝. 兰州南北两山植被恢复策略. 中国沙漠, 2006, 26(3): 493-497. | |
10 | Dou X D. Hazard evaluation and control scheme of Daqinggou debris flow disasters in Anning District of Lanzhou. Resource Information and Engineering, 2020, 35(1): 110-112. |
窦晓东. 兰州市安宁区大青沟泥石流灾害危害性评价及治理方案. 资源信息与工程, 2020, 35(1): 110-112. | |
11 | Yao B G. Distribution of geological hazards and their control in Lanzhou. Gansu Ecology, 2007, 16(1): 71-75. |
姚宝贵. 兰州市市区地质灾害分布与防治建议. 甘肃地质, 2007, 16(1): 71-75. | |
12 | Wu Q L. The applicability analysis of massive artificial forestation in Lanzhou south-north hills. Research of Soil and Water Conservation, 2003, 10(3): 134-136. |
吴庆龙. 兰州南北两山绿化造林工程的适宜性分析. 水土保持研究, 2003, 10(3): 134-136. | |
13 | Li L J, Jiang Z R, Li Z P, et al. Comprehensive evaluation on drought-resistance of three tree species and the choice of drought resistance indexes. Research of Soil and Water Conservation, 2006, 13(6): 253-259. |
李禄军, 蒋志荣, 李正平, 等. 3树种抗旱性的综合评价及其抗旱指标的选取. 水土保持研究, 2006, 13(6): 253-259. | |
14 | Jiang Z R, Liang X T, Zhu G, et al. Responses of main physiological indexes of four tree species to simulating water stress. Journal of Desert Research, 2009, 29(3): 485-492. |
蒋志荣, 梁旭婷, 朱恭, 等. 4树种主要生理指标对模拟水分胁迫的响应. 中国沙漠, 2009, 29(3): 485-492. | |
15 | Zhou Z H, Li Y, Jiao J. Quantity dynamics of Reaumuria soongorica populations from different habitats in the south-north hills in Lanzhou. Journal of Natural Resources, 2011, 26(10): 1726-1737. |
周资行, 李毅, 焦健. 兰州市南北两山不同生境红砂种群数量动态研究. 自然资源学报, 2011, 26(10): 1726-1737. | |
16 | Zhong F, Zhao J, Sun R G, et al. Spatial distribution of soil nutrients and soil microbes in five arbore-bushe-grass lands at the south-north hills in Lanzhou, China. Acta Prataculturae Sinica, 2010, 19(3): 94-101. |
钟芳, 赵瑾, 孙荣高, 等. 兰州南北两山五类乔灌木林草地土壤养分与土壤微生物空间分布研究. 草业学报, 2010, 19(3): 94-101. | |
17 | Chen X H, Duan Z H, Song Y X, et al. Soil water dynamic in planted shrubs in Southern and Northern Mountains of Lanzhou city. Journal of Desert Research, 2006, 26(4): 532-535. |
陈小红, 段争虎, 宋耀选, 等. 兰州市南北两山人工灌木林地土壤水分动态. 中国沙漠, 2006, 26(4): 532-535. | |
18 | Liu M X, Li R, Zhang C, et al. Seasonal characteristics and influencing factors of soil microbial in Nanshan, Lanzhou. China Environmental Science, 2018, 38(7): 2722-2730. |
刘旻霞, 李瑞, 张灿, 等. 兰州市南山季节性土壤微生物特征及影响因素. 中国环境科学, 2018, 38(7): 2722-2730. | |
19 | Jing Y. A brief analysis of the characteristics and utilization of climatic resources and natural resources in Lanzhou City. Agricultural Technology and Information, 2015(16): 40-42. |
景阳. 浅析兰州市气候资源与自然资源的特点和利用. 农业科技与信息, 2015(16): 40-42. | |
20 | Wu L Y, Su S P, Wang H. Preliminary investigation into plant and vegetation types in afforestation region in Southern and Northern Mountains of Lanzhou City. Journal of Desert Research, 2006, 26(4): 564-568. |
武利玉, 苏世平, 王蕙. 兰州南北两山绿化区植物与植被类型初查. 中国沙漠, 2006, 26(4): 564-568. | |
21 | Zhang W R, Xu B T. Study method of forest soil. Beijing: China Forestry Publishing Press, 1986: 1-45. |
张万儒, 许本彤. 森林土壤定位研究方法. 北京: 中国林业出版社, 1986: 1-45. | |
22 | Lu R K. Analysis methods of soil agricultural chemistry. Beijing: China Agricultural Science and Technology Press, 1999: 474-490. |
鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社, 1999: 474-490. | |
23 | Xiong Y, Li Q K. Chinese soil (Second Edition).Beijing: Science Press, 1990: 433-443. |
熊毅, 李庆逵. 中国土壤(第二版). 北京: 科学出版社, 1990: 433-443. | |
24 | Li D S, Zhang P, Zhang S L, et al. A study on water conservation capacity of forest soil in Huangqian reservoir area. Journal of Nanjing Forestry University (Natural Sciences Edition), 2004, 28(1): 25-27. |
李德生, 张萍, 张水龙, 等. 黄前库区森林土壤蓄水能力研究. 南京林业大学学报(自然科学版), 2004, 28(1): 25-27. | |
25 | Guo J F, Yang Y S, Chen G S, et al. A review on litter decomposition in forest ecosystem. Scientia Silvae Sinicae, 2006, 42(4): 93-100. |
郭剑芬, 杨玉盛, 陈光水, 等. 森林凋落物分解研究进展. 林业科学, 2006, 42(4): 93-100. | |
26 | Yu H X, Wang J Y, Wan F H, et al. Research progress on effects of plant litter on the decomposition of soil organic matter. Journal of Biosafety, 2018, 27(2): 88-94. |
余涵霞, 王家宜, 万方浩, 等. 植物凋落物影响土壤有机质分解的研究进展. 生物安全学报,2018, 27(2): 88-94. | |
27 | Cao G D, Chen J H, Xia J, et al. Analysis of soil physical properties under different vegetation types in the alluvial fan area of Manas River watershed. Acta Ecologica Sinica, 2013, 33(1): 195-204. |
曹国栋, 陈接华, 夏军, 等. 玛纳斯河流域扇缘带不同植被类型下土壤物理性质. 生态学报, 2013, 33(1): 195-204. | |
28 | Fan B, Lin L, Cao G M, et al. Relationship between plant rools and physical soil properties in alpine meadows at different degradation stages. Acta Ecologica Sinica, 2020, 40(7): 2300-2309. |
樊博, 林丽, 曹广民, 等. 不同演替状态下高寒草甸土壤物理性质与植物根系的相互关系. 生态学报, 2020, 40(7): 2300-2309. | |
29 | Wei Q, Ling L, Chai C S, et al. Soil physical and chemical properties in forest succession process in Xinglong Mountain of Gansu. Acta Ecologica Sinica, 2012, 32(15): 4700-4713. |
魏强, 凌雷, 柴春山, 等. 甘肃兴隆山森林演替过程中的土壤理化性质. 生态学报, 2012, 32(15): 4700-4713. | |
30 | Xia L D, Cao S, Zhang H, et al. Effect of biochar on phosphorus forms and phosphatase activity in red soil under different water conditions. Journal of Agro-Environment Science, 2019, 38(5): 1101-1111. |
夏丽丹, 曹升, 张虹, 等. 不同水分条件下生物炭对红壤磷素形态及磷酸酶活性的影响. 农业环境科学学报, 2019, 38(5): 1101-1111. | |
31 | Lv G, Wu X Y. Review on influential factors of soil infiltration characteristics. Chinese Agricultural Science Bulletin, 2008, 24(7): 494-499. |
吕刚, 吴祥云. 土壤入渗特性影响因素研究综述. 中国农学通报, 2008, 24(7): 494-499. | |
32 | Zhao Y Y, Wang Y J, Wang Y Q, et al. Effects of structures of plantation forests on soil infiltration characteristics in source water protect areas in Northern Chongqing City. Acta Ecologica Sinica, 2010, 30(15): 4162-4172. |
赵洋毅, 王玉杰, 王云琦, 等. 渝北水源区水源涵养林构建模式对土壤渗透性的影响. 生态学报, 2010, 30(15): 4162-4172. | |
33 | Liu X, Zhang G C, Li X L, et al. Characteristics of soil infiltration and water-holding of different forest vegetation in ecological rehabilitation of small watershed. Journal of Soil and Water Conservation, 2004, 18(6): 1-5. |
刘霞, 张光灿, 李雪蕾, 等. 小流域生态修复过程中不同森林植被土壤入渗与贮水特征. 水土保持学报, 2004, 18(6): 1-5. | |
34 | Fu Y B, Wang X C, Chen X, et al. Distribution of soil pH and its relationships with soil nutrients in Bijie tobacco-growing area. Soils, 2013, 45(1): 46-51. |
符云鹏, 王小翠, 陈雪, 等. 毕节烟区土壤pH值分布状况及与土壤养分的关系. 土壤, 2013, 45(1): 46-51. | |
35 | Paul K I, Black A S, Conyers M K. Effect of plant residue return on the development of surface soil pH gradients. Biology and Fertility of Soils, 2011, 33(1): 75-82. |
36 | Wang W W, Hu Z H. Resource of symbiotic nitrogen fixation of legumes in Alashan Desert. Bulletin of Soil and Water Conservation, 2001, 21(5): 30-33. |
王卫卫, 胡正海. 阿拉善荒漠区豆科植物共生固氮资源初步研究. 水土保持通报, 2001, 21(5): 30-33. | |
37 | Rong Q Q, Liu J T, Xia J B, et al. Leaf N and P stoichiometry of Tamarix chinensis L. in Laizhou Bay wetland, Shandong Province of East China. Chinese Journal of Ecology, 2012, 31(12): 3032-3037. |
荣戗戗, 刘京涛, 夏江宝, 等. 莱州湾湿地柽柳叶片N、P 生态化学计量学特征. 生态学杂志, 2012, 31(12): 3032-3037. | |
38 | Feng H Y, Du M Y, Xin X B, et al. Seasonal variation in C, N, and P stoichiometry of Platycladus orientalis plantation in the rocky mountainous areas of North China. Acta Ecologica Sinica, 2019, 39(5): 1572-1582. |
封焕英, 杜满义, 辛学兵, 等. 华北石质山地侧柏人工林C、N、P生态化学计量特征的季节变化. 生态学报, 2019, 39(5): 1572-1582. | |
39 | Liu X, Peng D L, Qiu X C. Differences in soil physicochemical properties between different forest types of Larix principis-rupprechtii. Chinese Journal of Applied and Environmental Biology, 2018, 24(4): 735-743. |
刘欣, 彭道黎, 邱新彩. 华北落叶松不同林型土壤理化性质差异. 应用与环境生物学报, 2018, 24(4): 735-743. |
[1] | CHAI Jin-Long, XU Chang-Lin, YANG Hai-Lei, ZHANG Jian-Wen, XIAO Hong, PAN Tao-Tao, WANG Yan, YU Xiao-Jun. Effect of simulated trampling and rainfall on soil physical properties and microorganism abundance in an alpine meadow [J]. Acta Prataculturae Sinica, 2017, 26(2): 30-42. |
[2] | DENG Xiao-Jun, CHEN Xiao-Long, TANG Jian, WANG Hui-Li, HAN Hua, XU Yong-Teng, HE Wen-Ping. Assessment of forest soil fertility using an integrated index based on the Nemerow meth [J]. Acta Prataculturae Sinica, 2016, 25(7): 34-41. |
[3] | XI Jun-Qiang, ZHAO Cui-Lian, YANG Zi-Hui, GUO Shu-Jiang, WANG Qiang-Qiang, ZHANG Jian-Hui. Soil moisture spatial distribution and infiltration characteristics of Nitraria nebkha in an oasis-desert ecotone [J]. Acta Prataculturae Sinica, 2016, 25(11): 15-24. |
[4] | LIU Xiao-Dong, YIN Guo-Li, WU Jun, CHEN Jian-Gang, MA Long-Xi, SHI Shang-Li. Effects of nitrogen addition on the physical properties of soil in an alpine meadow on the eastern Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2015, 24(10): 12-21. |
[5] | SUN Hong,YU Ying-wen,MA Xiang-li,MU Xiao-ming,LIAO Jia-fa. A comprehensive evaluation of nutritional value of nine shrubs in the karst area of northwest Guizhou [J]. Acta Prataculturae Sinica, 2014, 23(5): 99-106. |
[6] | WANG Guo-rong, CHEN Xiu-rong, ZHANG Jun-zhong, HAN Yu-zhu, HU Yi-gang, YANG Cheng-de, XU Chang-lin. The temporal and spatial distribution of soil microorganism physiological floras in alpine shrubs of the eastern Qilian mountains [J]. Acta Prataculturae Sinica, 2011, 20(2): 31-38. |
[7] | HUANG Fen, CAO Jian-hua, LIANG Jian-hong, HE Yuan-yuan, ZHU Min-jie. Analysis on variance and correlation of mainly shrub nutrients on karst areas in Southwest Guizhou [J]. Acta Prataculturae Sinica, 2010, 19(1): 248-252. |
[8] | WEN Yi-fei, CAO Guo-jun, FAN Jiang-wen, MAO Hua-ming, LUO Fu-cheng. Relationship between phenols and in vitro digestibility of six legume feeding shrubs [J]. Acta Prataculturae Sinica, 2009, 18(1): 32-38. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 387
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 342
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||