Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (10): 122-134.DOI: 10.11686/cyxb2022082
Tao LIN1,2(), Li-jiao ZHANG1(), Rong-rong HAN1, Yong-xiong YU1, Cao-de JIANG1()
Received:
2022-02-19
Revised:
2022-04-18
Online:
2022-10-20
Published:
2022-09-14
Contact:
Cao-de JIANG
Tao LIN, Li-jiao ZHANG, Rong-rong HAN, Yong-xiong YU, Cao-de JIANG. Effects of the Gm4CL2 gene on aluminum tolerance of Arabidopsis and alfalfa[J]. Acta Prataculturae Sinica, 2022, 31(10): 122-134.
引物名称Primer name | 引物序列 Primer sequence (5'-3') | 用途Usage |
---|---|---|
Gm4CL2-F | GCTCTAGAATGATAACTCTAGC | 基因克隆与表达载体构建 Gene cloning and expression vector construction |
Gm4CL2-R | TCCTTCTCTTG | |
qRTGm4CL2-F | TCCCCCGGGAGGCGTCTGAGT | Gm4CL2表达荧光定量 Fluorescence quantitation of Gm4CL2 expression |
qRTGm4CL2-R | GGCGGCGGTTTC | |
q18S rRNA-F | CCTCCCTCTCCACTCCTACTG | 内参基因 Internal reference gene |
q18S rRNA-R | GGAAATGAGGTGGGTGTCGGC | |
qAtMATE-F | GCATAGGACTTCCGTTTGTGGCA | AtMATE表达荧光定量 Fluorescence quantitation of AtMATE expression |
qAtMATE-R | CGAACACAAACGCTAAGGCA | |
qAtSTAR1-F | ACTGTTGCGGATAATGTGAGATA | AtSTAR1表达荧光定量 Fluorescence quantitation of AtSTAR1 expression |
qAtSTAR1-R | AGAGCACTTGTTGGTTCATCGA | |
QAtSTAR2-F | AGAAGACGACGACAAAACAAAAA | AtSTAR2表达荧光定量 Fluorescence quantitation of AtSTAR2 expression |
QAtSTAR2-R | ATGAACTGAAGAACAAATCCGA | |
qAtactin-F | GGCTCCTCTTAACCCAAAGGC | 内参基因 Internal reference gene |
qAtactin-R | CACACCATCACCAGAATCCAG |
Table 1 Primer information
引物名称Primer name | 引物序列 Primer sequence (5'-3') | 用途Usage |
---|---|---|
Gm4CL2-F | GCTCTAGAATGATAACTCTAGC | 基因克隆与表达载体构建 Gene cloning and expression vector construction |
Gm4CL2-R | TCCTTCTCTTG | |
qRTGm4CL2-F | TCCCCCGGGAGGCGTCTGAGT | Gm4CL2表达荧光定量 Fluorescence quantitation of Gm4CL2 expression |
qRTGm4CL2-R | GGCGGCGGTTTC | |
q18S rRNA-F | CCTCCCTCTCCACTCCTACTG | 内参基因 Internal reference gene |
q18S rRNA-R | GGAAATGAGGTGGGTGTCGGC | |
qAtMATE-F | GCATAGGACTTCCGTTTGTGGCA | AtMATE表达荧光定量 Fluorescence quantitation of AtMATE expression |
qAtMATE-R | CGAACACAAACGCTAAGGCA | |
qAtSTAR1-F | ACTGTTGCGGATAATGTGAGATA | AtSTAR1表达荧光定量 Fluorescence quantitation of AtSTAR1 expression |
qAtSTAR1-R | AGAGCACTTGTTGGTTCATCGA | |
QAtSTAR2-F | AGAAGACGACGACAAAACAAAAA | AtSTAR2表达荧光定量 Fluorescence quantitation of AtSTAR2 expression |
QAtSTAR2-R | ATGAACTGAAGAACAAATCCGA | |
qAtactin-F | GGCTCCTCTTAACCCAAAGGC | 内参基因 Internal reference gene |
qAtactin-R | CACACCATCACCAGAATCCAG |
1 | Yang J L, Fan W, Zheng S J. Mechanisms and regulation of aluminum-induced secretion of organic acid anions from plant roots. Journal of Zhejiang University-Science B, 2019, 20(6): 513-527. |
2 | Zhang X, Long Y, Huang J, et al. Molecular mechanisms for coping with Al toxicity in plants. International Journal of Molecular Sciences, 2019, 20(7): 1551. |
3 | Hanson A A, Barnes D K, Hill R R. Alfalfa and alfalfa improvement. Madison, Wisconsin, USA: American Society of Agronomy, Inc., 1988. |
4 | Ryan P R, Dong D, Teuber F, et al. Assessing how the aluminum-resistance traits in wheat and rye transfer to hexaploid and octoploid triticale. Frontiers in Plant Science, 2018, 9: 1334. |
5 | Lavhale S G, Kalunke R M, Giri A P. Structural, functional and evolutionary diversity of 4-coumarate-CoA ligase in plants. Planta, 2018, 248(5): 1063-1078. |
6 | Zhang C H, Ma T, Luo W C, et al. Identification of 4CL genes in desert poplars and their changes in expression in response to salt stress. Genes, 2015, 6: 901-917. |
7 | Naik P, Wang J P, Sederof R, et al. Assessing the impact of the 4CL enzyme complex on the robustness of monolignol biosynthesis using metabolic pathway analysis. PLoS One, 2018, 13(3): e0193896. |
8 | Wei Y, Jiang C, Han R, et al. Plasma membrane proteomic analysis by TMT-PRM provides insight into mechanisms of aluminum resistance in tamba black soybean roots tips. PeerJ, 2020, 8: e9312. |
9 | Wang J, Gao X, Dong J, et al. Over-expression of the heat-responsive wheat gene TaHSP23.9 in transgenic Arabidopsis conferred tolerance to heat and salt stress. Frontiers in Plant Science, 2020(11): 266-270. |
10 | Gan Z C, Chen D Y, Zhang L, et al. Research on aluminum tolerance of citrate synthase transgenic alfalfa. Scientia Agricultura Sinica, 2010, 43(16): 3461-3466. |
甘智才, 陈东颖, 张丽, 等. 转柠檬酸合成酶基因苜蓿耐铝性研究. 中国农业科学, 2010, 43(16): 3461-3466. | |
11 | Wei Y M. Plasma membrane proteomic analysis provides insight into mechanisms of aluminum resistance and functional haracterization and utilization of related differentially expressed proteins in Tamba black soybean. Chongqing: Southwest University, 2020. |
魏运民. 基于质膜蛋白组学探究丹波黑大豆耐铝的分子机制及相关差异蛋白的功能鉴定与利用. 重庆: 西南大学, 2020. | |
12 | Jiang C, Liu L, Li X, et al. Insights into aluminum-tolerance pathways in Stylosanthes as revealed by RNA-seq analysis. Scientific Reports, 2018, 8(1): 6072. |
13 | Liu S, Zhao L, Liao Y, et al. Dysfunction of the 4-coumarate: coenzyme A ligase 4CL4 impacts aluminum resistance and lignin accumulation in rice. Plant Journal, 2020, 104(5): 1233-1250. |
14 | Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. Journal of Experimental Botany, 2014, 65(5): 1229-1240. |
15 | Chen X H, Su W L, Zhang H, et al. Fraxinus mandshurica 4-coumarate-CoA ligase 2 enhances drought and osmotic stress tolerance of tobacco by increasing coniferyl alcohol content. Plant Physiology and Biochemistry, 2020, 155: 697-708. |
16 | Sun S C, Xiong X P, Zhang X L, et al. Characterization of the Gh4CL gene family reveals a role of Gh4CL7 in drought tolerance. BMC Plant Biology, 2020, 20: 125. |
17 | Wohl J, Petersen M. Phenolic metabolism in the hornwort Anthoceros agrestis: 4-coumarate CoA ligase and 4-hydroxybenzoate CoA ligase. Plant Cell Reports, 2020, 39: 1129-1141. |
18 | Mohammad A, Hossain S B. Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Frontiers in Plant Science, 2015, 6: 420. |
19 | Jain G, Gould K S. Are betalain pigments the functional homologues of anthocyanins in plants. Environmental and Experimental Botany, 2015, 119: 48-53. |
20 | Ullah A, Sun H, Yan X, et al. A novel cotton WRKY-gene, GhWRKY6-like, improves salt tolerance by activating the ABA signalling pathway and scavenging of reactive oxygen species. Physiologia Plantarum, 2018, 162(4): 439-454. |
21 | Chen X, Wang H, Li X, et al. Molecular cloning and functional analysis of 4-Coumarate: CoA ligase 4 (4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biology, 2019, 19(1): 231. |
22 | Tian X M, Yan L H, Xiang G F, et al. Research progress on 4-coumarate: coenzyme A ligase (4CL) in plants. Biotechnology Bulletin, 2017, 33(4): 19-26. |
田晓明, 颜立红, 向光锋, 等. 植物4-香豆酸: 辅酶A连接酶研究进展. 生物技术通报, 2017, 33(4): 19-26. | |
23 | Hu J, Qi Q, Zhao Y, et al. Unraveling the impact of Pto4CL1 regulation on the cell wall components and wood properties of perennial transgenic Populus tomentosa. Plant Physiology and Biochemistry, 2019, 139: 672-680. |
24 | Ma Q, Yi R, Li L, et al. GsMATE encoding a multidrug and toxic compound extrusion transporter enhances aluminum tolerance in Arabidopsis thaliana. BMC Plant Biology, 2018, 18(1): 1-10. |
25 | Zuo F H, Ling G Z, Tang X L, et al. Al stress-induced citrate secretion from roots in Stylosanthes. Scientia Agricultura Sinica, 2010, 43(1): 59-64. |
左方华, 凌桂芝, 唐新莲, 等. 铝胁迫诱导柱花草根系分泌柠檬酸. 中国农业科学, 2010, 43(1): 59-64. | |
26 | Ma Q, Yan Q, Zhang Z S, et al. Identification, evolution and expression analysis of the CCoAOMT family genes in Medicago sativa. Acta Prataculturae Sinica, 2021, 30(11): 144-156. |
马倩, 闫启, 张正社, 等. 紫花苜蓿CCoAOMT基因家族的鉴定、进化及表达分析. 草业学报, 2021, 30(11): 144-156. |
[1] | Yang-yang MIAO, Yan-rui ZHANG, Biao SONG, Xu-tong LIU, An-qi ZHANG, Jin-ze LV, Hao ZHANG, Xiao-hua ZHANG, Jia-hui OUYANG, Wang LI, Shan-min QU. Effects of Suaeda glauca rhizobacteria and endophytic bacterial strains on alfalfa growth under salt-alkaline stress [J]. Acta Prataculturae Sinica, 2022, 31(9): 107-117. |
[2] | Jun-wei ZHAO, Sheng-yi LI, Yan-liang SUN, Xuan-shuai LIU, Chun-hui MA, Qian-bing ZHANG. Fine root turnover of alfalfa in different soil horizons under different nitrogen and phosphorus levels [J]. Acta Prataculturae Sinica, 2022, 31(9): 118-128. |
[3] | Wei-dong CHEN, Yu-xia ZHANG, Qing-xin ZHANG, Ting-yu LIU, Xian-guo WANG, Dong-ru WANG. The effect of last cutting time on the antioxidant system and cold resistance of alfalfa root-neck [J]. Acta Prataculturae Sinica, 2022, 31(9): 129-138. |
[4] | Min-hua YIN, Yan-lin MA, Yan-xia KANG, Qiong JIA, Guang-ping QI, Jing-hai WANG. Effects of nitrogen application on alfalfa yield and quality in China-A Meta-analysis [J]. Acta Prataculturae Sinica, 2022, 31(9): 36-49. |
[5] | Yan-liang SUN, Jun-wei ZHAO, Xuan-shuai LIU, Sheng-yi LI, Chun-hui MA, Xu-zhe WANG, Qian-bing ZHANG. Effect of nitrogen application on photosynthetic daily variation, leaf morphology and dry matter yield of alfalfa at the early flowering growth stage [J]. Acta Prataculturae Sinica, 2022, 31(9): 63-75. |
[6] | Jian-tao ZHAO, Ya-fei YUE, Qian-bing ZHANG, Chun-hui MA. Relationship between cold resistance of alfalfa, degree of fall-dormancy and snow cover thickness in Northern Xinjiang [J]. Acta Prataculturae Sinica, 2022, 31(8): 24-34. |
[7] | Cai-ting LIU, Li-ping MAO, Ayixiemu, Ying-wen YU, Yu-ying SHEN. Effects of alfalfa (Medicago sativa) proportion on growth and physiological characteristics of cold resistance in mixtures with Elymus nutans [J]. Acta Prataculturae Sinica, 2022, 31(7): 133-143. |
[8] | Xue-meng WANG, Xin HE, Han ZHANG, Rui SONG, Pei-sheng MAO, Shan-gang JIA. Non-destructive identification of artificially aged alfalfa seeds using multispectral imaging analysis [J]. Acta Prataculturae Sinica, 2022, 31(7): 197-208. |
[9] | Qing ZHANG, Jing XING, Jia-ming YAO, Ting-chao YIN, Xin-ru HUANG, Yue HE, Jing ZHANG, Bin XU. The role of a cytokinin signaling pathway type-B ARR transcription factor, LpARR10, in cadmium tolerance of perennial ryegrass [J]. Acta Prataculturae Sinica, 2022, 31(5): 135-143. |
[10] | Huan ZHANG, Yi-xiao MU, Gui-jie ZHANG. Effects of Lycium barbarum by-products on fermentation quality and microbial diversity of alfalfa silage [J]. Acta Prataculturae Sinica, 2022, 31(4): 136-144. |
[11] | Hong-ren SUN, Xian-guo WANG, Yao-jun BU, Nan QIAO, Bo REN. Preliminary study of a sufficiency index of soil N and recommended N fertilizer application rates for alfalfa in the Loess Plateau of China [J]. Acta Prataculturae Sinica, 2022, 31(4): 32-42. |
[12] | Li-min GAO, Chun CHEN, Yi-xin SHEN. Effects of nitrogen and phosphorus fertilizer rates on forage dry matter yield and regrowth of alfalfa in seasonal cultivation systems [J]. Acta Prataculturae Sinica, 2022, 31(4): 43-52. |
[13] | Cheng-ming OU, Mei-qi ZHAO, Ming SUN, Pei-sheng MAO. Effects of ascorbic acid and salicylic acid pelleting on germination characteristics in alfalfa seeds under NaCl stress [J]. Acta Prataculturae Sinica, 2022, 31(4): 93-101. |
[14] | Chang-chun TONG, Xiao-jing LIU, Yong WU, Ya-jiao ZHAO, Jing WANG. Regulation of endogenous isoflavones on alfalfa nodulation and nitrogen fixation and nitrogen use efficiency [J]. Acta Prataculturae Sinica, 2022, 31(3): 124-135. |
[15] | Yu-huan WU, Zi-kui WANG, Ya-nan LIU, Qian-hu MA. Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping [J]. Acta Prataculturae Sinica, 2022, 31(3): 144-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||