Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (7): 28-37.DOI: 10.11686/cyxb2021185
Previous Articles Next Articles
Feng-ling GAN1,2(), Jie WEI1,2(), Sha-sha LI2
Received:
2021-05-07
Revised:
2021-09-23
Online:
2022-07-20
Published:
2022-06-01
Contact:
Jie WEI
Feng-ling GAN, Jie WEI, Sha-sha LI. Response of root-soil friction characteristics of three common grasses to soil water content in purple soil bunds[J]. Acta Prataculturae Sinica, 2022, 31(7): 28-37.
土壤质量含水率 Soil mass moisture content (%) | 黏粒Clay (%) | 粉粒Silt (%) | 砂粒Sand (%) | pH | 有机质 Organic matter (%) |
---|---|---|---|---|---|
<0.002 mm | 0.002~0.05 mm | >0.05~2 mm | |||
5.37±0.11 | 10.77±0.03 | 69.47±0.12 | 19.76±0.14 | 6.14±0.02 | 1.49±0.11 |
Table 1 Soil chemical and physical properties of undisturbed soil bunds
土壤质量含水率 Soil mass moisture content (%) | 黏粒Clay (%) | 粉粒Silt (%) | 砂粒Sand (%) | pH | 有机质 Organic matter (%) |
---|---|---|---|---|---|
<0.002 mm | 0.002~0.05 mm | >0.05~2 mm | |||
5.37±0.11 | 10.77±0.03 | 69.47±0.12 | 19.76±0.14 | 6.14±0.02 | 1.49±0.11 |
土壤含水率 Soil water content | 根-土界面 Root-soil interface | 黏聚力 Cohesive force (kPa) | 摩擦系数 Friction coefficient | 最大抗拔力 Maximum pulling force (N) | 抗拔强度 Pull strength (MPa) |
---|---|---|---|---|---|
5% | 马唐 D. sanguinalis | 1.00±0.27b | 0.87±0.08a | 1.03±0.26b | 138.76±43.39c |
稗草 E. crusgalli | 11.71±0.20a | 0.76±0.09b | 1.36±0.35b | 165.35±41.69b | |
牛筋草 E. indica | 0.33±0.04c | 1.13±0.11a | 3.23±0.95a | 244.82±75.45a | |
10% | 马唐 D. sanguinalis | 23.11±0.45a | 0.88±0.28a | 1.33±0.19b | 200.66±36.90b |
稗草 E. crusgalli | 19.31±0.37b | 0.51±0.17b | 1.53±0.36b | 224.18±41.23a | |
牛筋草 E. indica | 1.83±0.03c | 1.23±0.41a | 2.20±0.69a | 220.82±53.79a | |
15% | 马唐 D. sanguinalis | 0.51±0.01b | 0.89±0.15a | 2.10±0.35b | 302.03±23.47b |
稗草 E. crusgalli | 1.83±0.32a | 0.96±0.13a | 1.86±0.32b | 326.76±48.68a | |
牛筋草 E. indica | 1.65±0.28a | 1.07±0.21a | 2.95±1.13a | 382.12±13.98a | |
20% | 马唐 D. sanguinalis | 10.12±1.89b | 0.58±0.14b | 2.73±0.97a | 319.91±37.62a |
稗草 E. crusgalli | 17.80±3.21a | 0.61±0.16b | 2.37±0.26b | 303.44±23.81a | |
牛筋草 E. indica | 1.12±0.20c | 1.09±0.21a | 2.40±0.21b | 332.25±39.21a | |
25% | 马唐 D. sanguinalis | 15.10±2.95a | 0.59±0.06a | 2.31±0.75a | 317.36±24.21a |
稗草 E. crusgalli | 16.65±1.75a | 0.38±0.04b | 1.47±0.09b | 217.65±10.05b | |
牛筋草 E. indica | 1.16±1.23b | 0.62±0.08a | 1.40±0.13b | 228.06±15.60b |
Table 2 Root-soil interface friction characteristics of 3 typical herbs in soil bunds
土壤含水率 Soil water content | 根-土界面 Root-soil interface | 黏聚力 Cohesive force (kPa) | 摩擦系数 Friction coefficient | 最大抗拔力 Maximum pulling force (N) | 抗拔强度 Pull strength (MPa) |
---|---|---|---|---|---|
5% | 马唐 D. sanguinalis | 1.00±0.27b | 0.87±0.08a | 1.03±0.26b | 138.76±43.39c |
稗草 E. crusgalli | 11.71±0.20a | 0.76±0.09b | 1.36±0.35b | 165.35±41.69b | |
牛筋草 E. indica | 0.33±0.04c | 1.13±0.11a | 3.23±0.95a | 244.82±75.45a | |
10% | 马唐 D. sanguinalis | 23.11±0.45a | 0.88±0.28a | 1.33±0.19b | 200.66±36.90b |
稗草 E. crusgalli | 19.31±0.37b | 0.51±0.17b | 1.53±0.36b | 224.18±41.23a | |
牛筋草 E. indica | 1.83±0.03c | 1.23±0.41a | 2.20±0.69a | 220.82±53.79a | |
15% | 马唐 D. sanguinalis | 0.51±0.01b | 0.89±0.15a | 2.10±0.35b | 302.03±23.47b |
稗草 E. crusgalli | 1.83±0.32a | 0.96±0.13a | 1.86±0.32b | 326.76±48.68a | |
牛筋草 E. indica | 1.65±0.28a | 1.07±0.21a | 2.95±1.13a | 382.12±13.98a | |
20% | 马唐 D. sanguinalis | 10.12±1.89b | 0.58±0.14b | 2.73±0.97a | 319.91±37.62a |
稗草 E. crusgalli | 17.80±3.21a | 0.61±0.16b | 2.37±0.26b | 303.44±23.81a | |
牛筋草 E. indica | 1.12±0.20c | 1.09±0.21a | 2.40±0.21b | 332.25±39.21a | |
25% | 马唐 D. sanguinalis | 15.10±2.95a | 0.59±0.06a | 2.31±0.75a | 317.36±24.21a |
稗草 E. crusgalli | 16.65±1.75a | 0.38±0.04b | 1.47±0.09b | 217.65±10.05b | |
牛筋草 E. indica | 1.16±1.23b | 0.62±0.08a | 1.40±0.13b | 228.06±15.60b |
根-土界面 Root-soil interface | 黏聚力 Cohesive force | 摩擦系数 Friction coefficient | ||
---|---|---|---|---|
回归函数 Regression function | R2 | 回归函数 Regression function | R2 | |
马唐D. sanguinalis | y=-0.0058x2+0.4789x+4.3820 | 0.064 | y=-0.0009x2+0.0095x+0.8672 | 0.774 |
稗草E. crusgalli | y=0.0456x2-1.1991x+18.9100 | 0.125 | y=-0.0021x2+0.0491x+0.4748 | 0.417 |
牛筋草E. indica | y=-0.0094x2+0.3000x-0.7110 | 0.629 | y=-0.0028x2+0.0594x+0.8930 | 0.901 |
根-土界面 Root-soil interface | 最大抗拔力 Maximum pulling force | 抗拔强度 Pull strength | ||
回归函数 Regression function | R2 | 回归函数 Regression function | R2 | |
马唐D. sanguinalis | y=0.378x0.605 | 0.893 | y=-0.6068x2+27.7340x+6.6117 | 0.968 |
稗草E. crusgalli | y=0.189x2-0.006x+0.423 | 0.598 | y=-1.0387x2+31.7280x+83.5000 | 0.491 |
牛筋草E. indica | y=0.037x2-0.004x+2.854 | 0.640 | y=-1.2090x2+40.9380x-26.2970 | 0.876 |
Table 3 Relationships between root-soil interface friction characteristics of 3 kinds of herbs and soil water content
根-土界面 Root-soil interface | 黏聚力 Cohesive force | 摩擦系数 Friction coefficient | ||
---|---|---|---|---|
回归函数 Regression function | R2 | 回归函数 Regression function | R2 | |
马唐D. sanguinalis | y=-0.0058x2+0.4789x+4.3820 | 0.064 | y=-0.0009x2+0.0095x+0.8672 | 0.774 |
稗草E. crusgalli | y=0.0456x2-1.1991x+18.9100 | 0.125 | y=-0.0021x2+0.0491x+0.4748 | 0.417 |
牛筋草E. indica | y=-0.0094x2+0.3000x-0.7110 | 0.629 | y=-0.0028x2+0.0594x+0.8930 | 0.901 |
根-土界面 Root-soil interface | 最大抗拔力 Maximum pulling force | 抗拔强度 Pull strength | ||
回归函数 Regression function | R2 | 回归函数 Regression function | R2 | |
马唐D. sanguinalis | y=0.378x0.605 | 0.893 | y=-0.6068x2+27.7340x+6.6117 | 0.968 |
稗草E. crusgalli | y=0.189x2-0.006x+0.423 | 0.598 | y=-1.0387x2+31.7280x+83.5000 | 0.491 |
牛筋草E. indica | y=0.037x2-0.004x+2.854 | 0.640 | y=-1.2090x2+40.9380x-26.2970 | 0.876 |
1 | Du X, Li S C,Peng Y X. Benefit study on the improved slope farmland by alley cropping and stone dike terrace.Subtropical Soil and Water Conservation,2012,24(3): 26-35. |
杜旭,李顺彩,彭业轩. 植物篱与石坎梯田改良坡耕地效益研究. 亚热带水土保持,2012,24(3): 26-35. | |
2 | Bao Y H,Cong P J,Feng W, et al. Comprehensive management system of soil and water loss in purple soil area of Southwestern China. Bulletin of Soil and Water Conservation,2018,38(3): 143-150. |
鲍玉海,丛佩娟,冯伟,等. 西南紫色土区水土流失综合治理技术体系. 水土保持通报,2018,38(3): 143-150. | |
3 | Li J J,Wei J,Li J L, et al. Experimental study of different layers infiltration of soil bunds on purple-soil sloping farmlands. Journal of Soil and Water Conservation,2017,31(4): 69-74. |
黎娟娟,韦杰,李进林,等. 紫色土坡耕地土质埂坎分层入渗试验研究. 水土保持学报,2017,31(4): 69-74. | |
4 | Li J L,Wei J,He X B. Stability analysis of different scale soil bunds on purple soil sloping farmlands. Science of Soil and Water Conservation,2018,16(5): 1-9. |
李进林,韦杰,贺秀斌. 紫色土坡耕地不同规格土坎稳定性分析. 中国水土保持科学,2018,16(5): 1-9. | |
5 | Amare T,Zegeye A D,Yitaferu B, et al. Combined effect of soil bund with biological soil and water conservation measures in the Northwestern Ethiopian highlands. Ecohydrology & Hydrobiology,2014,14(3): 192-199. |
6 | Jemberu W,Baartman J E M,Fleskens L, et al. Assessing the variation in bund structure dimensions and its impact on soil physical properties and hydrology in Koga catchment,highlands of Ethiopia. Catena,2017,157(10): 195-204. |
7 | Pallewattha M,Indraratna B,Heitor A, et al. Shear strength of a vegetated soil incorporating both root reinforcement and suction. Transportation Geotechnics,2019,18(3): 72-82. |
8 | Nomessi K K,André G T,Zanin K. Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects. Ecological Engineering,2016,86(1): 146-153. |
9 | Zhang C B,Chen L H,Jiang J. Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology,2014,206(2): 196-202. |
10 | Li G R,Hu X S,Mao X Q, et al. Numerical simulation of shrub roots for slope protection effects on loess area of Northeast Qinghai-Tibetan Plateau. Journal of Rock Mechanics and Engineering,2012,29(9): 1877-1884. |
李国荣,胡夏嵩,毛小青,等. 青藏高原东北部黄土区灌木根系护坡效应的数值模拟. 岩石力学与工程学报,2012,29(9): 1877-1884. | |
11 | Wang Y Z,Liu X F,Zhang Z K, et al. Experimental research on influence of root content on strength of undisturbed and remolded grassroots-reinforced soil. Chinese Journal of Geotechnical Engineering,2015,37(8): 1405-1410. |
王元战,刘旭菲,张智凯,等. 含根量对原状与重塑草根加筋土强度影响的试验研究. 岩土工程学报,2015,37(8): 1405-1410. | |
12 | Ye C,Guo Z,Li Z, et al. The effect of Bahiagrass roots on soil erosion resistance of Aquults in subtropical China. Geomorphology,2017,285: 82-93. |
13 | Song W F,Chen L H,Liu X P. Experiment on characteristic of interface between root system and soil. Science of Soil and Water Conservation,2006,4(2): 62-65. |
宋维峰,陈丽华,刘秀萍. 根系与土体接触面相互作用特性试验. 中国水土保持科学,2006,4(2): 62-65. | |
14 | Xing H W,Liu J,Wang L H, et al. Friction characteristics of soil-soil interface and root-soil interface of Caragana intermedia and Salix psammophila. Tribology,2010,30(1): 87-91. |
邢会文,刘静,王林和,等. 柠条、沙柳根与土及土与土界面摩擦特性. 摩擦学学报,2010,30(1): 87-91. | |
15 | Tian J,Cao B,Ji J N, et al. Direct shear friction test and numerical simulation of soil-soil and root-soil interface of Hedysarum scoparium and Salix psammophila. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(13): 149-156. |
田佳,曹兵,及金楠,等. 花棒沙柳根与土及土与土界面直剪摩擦试验与数值模拟. 农业工程学报,2015,31(13): 149-156. | |
16 | Liu Y B,Hu X S,Yu D M, et al. Distribution characteristics of combined herb and shrub roots in loess area of Xining Basin and their effect on enhancing soil shear strength. Journal of Engineering Geology,2020,28(3): 471-481. |
刘亚斌,胡夏嵩,余冬梅,等. 西宁盆地黄土区草本和灌木组合根系分布特征及其增强土体抗剪强度效应. 工程地质学报,2020,28(3): 471-481. | |
17 | Du J H,Hu J,Li G F, et al. Friction effects of the interface of rubber tree roots-soil. Natural Science Journal of Hainan University,2019,37(1): 68-73. |
杜金辉,胡俊,李光范,等. 橡胶树根-土界面摩阻效应试验研究. 海南大学学报(自然科学版),2019,37(1): 68-73. | |
18 | Fan C C. A displacement-based model for estimating the shear resistance of root-permeated soils. Plant Soil,2012,355(1/2): 103-119. |
19 | Chen Y,He B H,Lian C X, et al. Root-soil system anti-scourability on steep slopes in the Three Gorges Reservoir Area. Acta Ecologica Sinica,2016,36(16): 5173-5181. |
谌芸,何丙辉,练彩霞,等. 三峡库区陡坡根-土复合体抗冲性能. 生态学报,2016,36(16): 5173-5181. | |
20 | Wei J,Shi B L,Li J L. Response of soil shear strength to soil water content in purple soil slope cropland bunds. Transactions of the Chinese Society of Agricultural Engineering,2016,32(20): 153-160. |
韦杰,史炳林,李进林. 紫色土坡耕地埂坎土壤抗剪性能对含水率的响应. 农业工程学报,2016,32(20): 153-160. | |
21 | Lin D G,Huang B S,Lin S H. 3-D numerical investigations into the shear strength of the soil-root system of Makino bamboo and its effect on slope stability. Ecological Engineering,2010,36(8): 992-1006. |
22 | Ministry of Water Resources of the People’s Republic of China. Standard for geotechnical testing, GB/T50123-2019. Beijing: China Planning Publishing House,2019. |
中华人民共和国水利部. 土工试验方法标准, GB/T50123-2019. 北京: 中国计划出版社,2019. | |
23 | Liu Y B,Yu D M,Fu J T, et al. Experimental study on root-soil friction mechanical mechanism of Caragana korshinskii Kom in loess area. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(10): 198-205. |
刘亚斌,余冬梅,付江涛,等. 黄土区灌木柠条锦鸡儿根-土间摩擦力学机制试验研究. 农业工程学报,2017,33(10): 198-205. | |
24 | Wang R Z,Chen Y,Li T, et al. Root distribution characteristics of Vetiveria zizanioides and Digitaria sanguinalis and their effect on the anti-erodibility of purple soil in slope lands. Acta Prataculturae Sinica,2017,26(7): 45-54. |
王润泽,谌芸,李铁,等. 香根草和马唐的根系特征及对坡地紫色土抗侵蚀性的影响. 草业学报,2017,26(7): 45-54. | |
25 | Huang Z,Wei B,Zhang L, et al. Surface crack development rules and shear strength of compacted expansive soil due to dry-wet cycles. Geotechnical and Geological Engineering,2019,37(4): 2647-2657. |
26 | Xing H W. Test studies on the surface friction characteristics of 4 kinds of plant roots. Hohhot: Inner Mongolia Agricultural University,2009. |
邢会文. 4 种植物根-土界面摩阻特性研究. 呼和浩特: 内蒙古农业大学,2009. | |
27 | Wei J,Shi B L,Li J L, et al. Shear strength of purple soil bunds under different soil water contents and dry densities. Catena,2018,166(3): 124-133. |
28 | Zheng L W,Liu X G,Yu X X, et al. Effects of root diameter of Pinus tabuliformis on friction characteristics for root-soil interface. Journal of Beijing Forestry University,2014,26(3): 90-94. |
郑力文,刘小光,余新晓,等. 油松根系直径对根-土界面摩擦性能的影响. 北京林业大学学报,2014,26(3): 90-94. | |
29 | Mao Z,Yang M,Bourrier F. Evaluation of root reinforcement models using numerical modeling approaches. Plant and Soil,2014,381(1/2): 249-270. |
[1] | Tong JI, Qi JIANG, Zhan-jun WANG, Bo JI. An evaluation of drought resistance of seven Poaceous forages [J]. Acta Prataculturae Sinica, 2022, 31(7): 144-156. |
[2] | Zuo-tian YIN, Yu-hui WANG, Guang-sheng ZHOU, Quan-hui MA, Xiao-di LIU, Bing-rui JIA, Yan-ling JIANG. Response and sensitivity of photosynthesis of Stipa tianschanica in desert steppe to developing soil drought process [J]. Acta Prataculturae Sinica, 2022, 31(1): 81-94. |
[3] | Ru ZHANG, Jian-ping LI, Wen-dong PENG, Fang WANG, Zhi-gang LI. Effects of mulching with caragana (Caragana intermedia) branches on soil moisture content and temperature and reseeded forage biomass in desertified grassland in Ningxia Province, China [J]. Acta Prataculturae Sinica, 2021, 30(4): 58-67. |
[4] | PU Xue-ke, WU Chun-hua, ZHOU Yong-jin, MIAN You-ming, MIAO Fang-fang, HOU Xian-qing, LI Rong. Effects of dual-mulching of furrow and ridge with plastic film and straw on temporal and spatial changes of soil moisture and potato yield in dry-farming areas of southern Ningxia [J]. Acta Prataculturae Sinica, 2020, 29(10): 149-160. |
[5] | JIANG La-mei, YANG Xiao-dong, YANG Jian-jun, HE Xue-min, LÜ Guang-hui. Effects of different management strategies on soil organic carbon and nitrogen pools in arid areas and their influencing factors [J]. Acta Prataculturae Sinica, 2018, 27(12): 22-33. |
[6] | LI Wen, CAO Wen-Xia, LIU Hao-Dong, LI Xiao-Long, XU Chang-Lin, SHI Shang-Li, FENG Jin, ZHOU Chuan-Meng. Analysis of soil respiration under different grazing management patterns in the alpine meadow-steppe of the Qinghai-Tibet Plateau [J]. Acta Prataculturae Sinica, 2015, 24(10): 22-32. |
[7] | LIU Qing-lin, ZHANG En-he, WANG Qi, WANG Tian-tao, LIU Chao-wei, YIN Hui, YU Hua-lin. Effect of irrigation and nitrogen supply levels on water consumption, grain yield and water use efficiency of spring wheat on no-tillage with stubble standing farmland [J]. Acta Prataculturae Sinica, 2012, 21(5): 169-177. |
[8] | FAN Shi-jie, WANG Di, ZHANG Jun-lian, BAI Jiang-ping, SONG Ji-xuan, MA Zhi-xia. Effects of tillage strategies on the topsoil water content and the yield of potato [J]. Acta Prataculturae Sinica, 2012, 21(2): 271-279. |
[9] | CAO Wen-xia, XU Chang-lin, ZHANG De-gang, SHI Shang-li, YAO Tuo. Ecological responses of soil bulk density and water content to different non-grazing patterns in alpine rhododendron shrubland [J]. Acta Prataculturae Sinica, 2011, 20(3): 28-35. |
[10] | TAI Jian-hui, WANG Yan-rong, LI Xiao-xia, WEI Xue, CHEN Gu. Effects of different mulching on the establishment of Cleistogenes songorica [J]. Acta Prataculturae Sinica, 2011, 20(3): 287-291. |
[11] | ZHANG Yi, XIE Yong-sheng. Effects of different patterns of surface mulching on soil hydrology in an apple orchard [J]. Acta Prataculturae Sinica, 2011, 20(2): 85-92. |
[12] | YU Xiao-jun, PU Xiao-peng, HUANG Shi-jie, FANG Qiang-en, XU Ning, XU Chang-lin. Effects of ants (Tetramorium sp.) on eastern Qilian Mountains alpine grassland ecosystem [J]. Acta Prataculturae Sinica, 2010, 19(2): 140-145. |
[13] | LIU Guo-li, HE Shu-bin, YANG Hui-min. The responses and mechanisms of water use efficiency to different water stresses of three alfalfa varieties [J]. Acta Prataculturae Sinica, 2009, 18(3): 207-213. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||