Acta Prataculturae Sinica ›› 2022, Vol. 31 ›› Issue (7): 111-121.DOI: 10.11686/cyxb2021215
Jiao-yang TIAN(), Qiu-xia WANG, Shu-wen ZHENG, Wen-xian LIU()
Received:
2021-05-24
Revised:
2021-08-26
Online:
2022-07-20
Published:
2022-06-01
Contact:
Wen-xian LIU
Jiao-yang TIAN, Qiu-xia WANG, Shu-wen ZHENG, Wen-xian LIU. Genome-wide identification and expression profile analysis of the CPP gene family in Medicago truncatula[J]. Acta Prataculturae Sinica, 2022, 31(7): 111-121.
序 号 No. | 基因名称 Gene name | Phytozome号 Phytozome ID | 编码序列 Coding sequence (bp) | 蛋白质 Protein (AA) | 染色体定位 Chromosomal location | 分子量 Molecular weight (Da) | 等电点 Isoelectric point | 亲水指数 Grand average of hydropathicity | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
1 | MtCPP1 | Medtr1g012020.1 | 2604 | 867 | chr1:2312974..2319368 (-) | 93893.24 | 5.62 | -0.670 | 细胞核 Nucleus |
2 | MtCPP2 | Medtr1g086980.1 | 2496 | 831 | chr1:38931314..38941671 (+) | 93501.18 | 7.97 | -0.775 | 细胞核 Nucleus |
3 | MtCPP3 | Medtr1g103180.1 | 1101 | 366 | chr1:46677103..46682000 (-) | 39979.06 | 4.60 | -0.674 | 细胞核 Nucleus |
4 | MtCPP4 | Medtr1g103230.1 | 1875 | 624 | chr1:46702340..46705795 (-) | 70071.61 | 6.85 | -0.802 | 细胞核 Nucleus |
5 | MtCPP5 | Medtr2g049305.1 | 924 | 307 | chr2:21725271..21728509 (-) | 34610.89 | 8.50 | -0.169 | 叶绿体Chloroplast |
6 | MtCPP6 | Medtr3g110122.1 | 1791 | 596 | chr3:51048745..51054541 (-) | 65811.15 | 8.93 | -0.493 | 细胞核 Nucleus |
7 | MtCPP7 | Medtr5g006530.1 | 2337 | 778 | chr5:955306..960319 (-) | 85345.06 | 5.55 | -0.693 | 细胞核 Nucleus |
8 | MtCPP8 | Medtr6g087590.1 | 1824 | 607 | chr6:32942677..32948999 (+) | 65195.40 | 6.79 | -0.550 | 细胞核 Nucleus |
9 | MtCPP9 | Medtr8g103320.1 | 1437 | 478 | chr8:43471929..43476739 (+) | 51756.42 | 8.12 | -0.648 | 细胞核 Nucleus |
Table 1 The basic information of MtCPP gene family in M. truncatula
序 号 No. | 基因名称 Gene name | Phytozome号 Phytozome ID | 编码序列 Coding sequence (bp) | 蛋白质 Protein (AA) | 染色体定位 Chromosomal location | 分子量 Molecular weight (Da) | 等电点 Isoelectric point | 亲水指数 Grand average of hydropathicity | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
1 | MtCPP1 | Medtr1g012020.1 | 2604 | 867 | chr1:2312974..2319368 (-) | 93893.24 | 5.62 | -0.670 | 细胞核 Nucleus |
2 | MtCPP2 | Medtr1g086980.1 | 2496 | 831 | chr1:38931314..38941671 (+) | 93501.18 | 7.97 | -0.775 | 细胞核 Nucleus |
3 | MtCPP3 | Medtr1g103180.1 | 1101 | 366 | chr1:46677103..46682000 (-) | 39979.06 | 4.60 | -0.674 | 细胞核 Nucleus |
4 | MtCPP4 | Medtr1g103230.1 | 1875 | 624 | chr1:46702340..46705795 (-) | 70071.61 | 6.85 | -0.802 | 细胞核 Nucleus |
5 | MtCPP5 | Medtr2g049305.1 | 924 | 307 | chr2:21725271..21728509 (-) | 34610.89 | 8.50 | -0.169 | 叶绿体Chloroplast |
6 | MtCPP6 | Medtr3g110122.1 | 1791 | 596 | chr3:51048745..51054541 (-) | 65811.15 | 8.93 | -0.493 | 细胞核 Nucleus |
7 | MtCPP7 | Medtr5g006530.1 | 2337 | 778 | chr5:955306..960319 (-) | 85345.06 | 5.55 | -0.693 | 细胞核 Nucleus |
8 | MtCPP8 | Medtr6g087590.1 | 1824 | 607 | chr6:32942677..32948999 (+) | 65195.40 | 6.79 | -0.550 | 细胞核 Nucleus |
9 | MtCPP9 | Medtr8g103320.1 | 1437 | 478 | chr8:43471929..43476739 (+) | 51756.42 | 8.12 | -0.648 | 细胞核 Nucleus |
同源基因对位点 Homologous gene pairs | 非同义替换率 Ka | 同义替换率 Ks | Ka/Ks |
---|---|---|---|
MtCPP6/MtCPP9 | 0.48 | 2.87 | 0.17 |
MtCPP8/MtCPP9 | 0.14 | 0.72 | 0.20 |
Table 2 Evolutionary stress analysis of MtCPP genes
同源基因对位点 Homologous gene pairs | 非同义替换率 Ka | 同义替换率 Ks | Ka/Ks |
---|---|---|---|
MtCPP6/MtCPP9 | 0.48 | 2.87 | 0.17 |
MtCPP8/MtCPP9 | 0.14 | 0.72 | 0.20 |
1 | Zhang L Q, Li H, Zhang F Y, et al. Research progress in Medicago transcription factors. Chinese Journal of Grassland, 2014, 36(2): 108-116. |
张立全, 李慧, 张凤英, 等. 苜蓿属植物转录因子研究进展. 中国草地学报, 2014, 36(2): 108-116. | |
2 | Wang B, Chen M D, Lin L, et al. Signal pathways and related transcription factors of drought stress in plants. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(10): 1792-1806. |
王彬, 陈敏氡, 林亮, 等. 植物干旱胁迫的信号通路及相关转录因子研究进展. 西北植物学报, 2020, 40(10): 1792-1806. | |
3 | Andersen S U, Algreen-Petersen R G, Hoedl M, et al. The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana. Journal of Experimental Botany, 2007, 58(13): 3657-3670. |
4 | Lu T, Dou Y, Zhang C. Fuzzy clustering of CPP family in plants with evolution and interaction analyses. BMC Bioinformatics, 2013, 14(13): 1-8. |
5 | Schmit F, Cremer S, Gaubatz S. LIN54 is an essential core subunit of the DREAM/LINC complex that binds to the cdc2 promoter in a sequence‐specific manner. Febs Journal, 2010, 276(19): 5703-5716. |
6 | Brzeska K, Brzeski J, Chandler S, et al. Transgenic expression of CBBP, a CXC domain protein, establishes paramutation in maize. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(12): 5516-5521. |
7 | Yang Z F, Gu S L, Wang X F, et al. Molecular evolution of the CPP-like gene family in plants: Insights from comparative genomics of Arabidopsis and rice. Journal of Molecular Evolution, 2008, 67(3): 266-277. |
8 | Zhang L, Zhao H K, Wang Y M, et al. Genome-wide identification and expression analysis of the CPP-like gene family in soybean. Genetics and Molecular Research, 2015, 14(1): 1260-1268. |
9 | Song X Y, Zhang Y Y, Wu F C, et al. Genome-wide analysis of the maize (Zea mays L.) CPP-like gene family and expression profiling under abiotic stress. Genetics and Molecular Research, 2016, 15(3): 1-11. |
10 | Zhou Y, Hu L F, Ye S F, et al. Genome-wide identification and characterization of cysteine-rich polycomb-like protein (CPP) family genes in cucumber (Cucumis sativus) and their roles in stress responses. Biologia, 2018, 73(4): 425-435. |
11 | Yang R X, Wang P J, Chen Z Z, et al. Genome-wide identification and analysis of CPP transcription factor family in tea plants. Acta Botanica Boreali-Occidentalia Sinica, 2019, 39(6): 1024-1032. |
杨如兴, 王鹏杰, 陈芝芝, 等. 茶树CPP转录因子家族的全基因组鉴定及分析. 西北植物学报, 2019, 39(6): 1024-1032. | |
12 | Liu Z C, Running M P, Meyerowitz E M. TSO1 functions in cell division during Arabidopsis flower development. Development, 1997, 124(3): 665-672. |
13 | Sijacic P, Wang W, Liu Z. Recessive antimorphic alleles overcome functionally redundant loci to reveal TSO1 function in Arabidopsis flowers and meristems. PloS Genetics, 2011, 7(11): e1002352. |
14 | Cvitanich C, Pallisgaard N, Nielsen K A, et al. CPP1, a DNA-binding protein involved in the expression of a soybean leghemoglobin c3 gene. Proceedings of the National Academy of Sciences, 2000, 97(14): 8163-8168. |
15 | Wei Z W, Gai J Y. Model legume: Medicago truncatula. Acta Prataculturae Sinica, 2008, 17(1): 114-120. |
魏臻武, 盖钧镒. 豆科模式植物——蒺藜苜蓿. 草业学报, 2008, 17(1): 114-120. | |
16 | Wang Q X, Wei N, Jin X Y, et al. Molecular characterization of the COPT/Ctr-type copper transporter family under heavy metal stress in alfalfa. International Journal of Biological Macromolecules, 2021, 181: 644-652. |
17 | Jia X T, Liu W X, Xie W G, et al. Genome-wide analysis of the LBD transcription factor family in Medicago truncatula. Acta Botanica Boreali-Occidentalia Sinica, 2014, 34(11): 2176-2187. |
贾喜涛, 刘文献, 谢文刚, 等. 蒺藜苜蓿LBD转录因子基因家族全基因组分析. 西北植物学报, 2014, 34(11): 2176-2187. | |
18 | Min X Y, Wu H L, Zhang Z S, et al. Genome-wide identification and characterization of the aquaporin gene family in Medicago truncatula. Journal of Plant Biochemistry and Biotechnology, 2019, 28(3): 320-335. |
19 | Zhang Z S, Wei X Y, Liu W X, et al. Genome-wide identification and expression analysis of the fatty acid desaturase genes in Medicago truncatula. Biochemical and Biophysical Research Communications, 2018, 499(3): 361-367. |
20 | Finn R D, Tate J, Mistry J, et al. The Pfam protein families database. Nucleic Acids Research, 2004, 36(Database issue): D281-D288. |
21 | Eddy S R. Accelerated profile HMM searches. PloS Computational Biology, 2011, 7(10): e1002195. |
22 | Panu A, Manohar J, Konstantin A, et al. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 2012, 40(W1): W597-W603. |
23 | Chou K C, Shen H B. Plant-mPLoc: A top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2017, 5(6): e11335. |
24 | Newman L, Duffus A, Lee C. Using the free program MEGA to build phylogenetic trees from molecular data. The American Biology Teacher, 2016, 78(7): 608-612. |
25 | Chen C, Chen H, Zhang Y, et al. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Molecular Plant, 2020, 13(8): 1194-1202. |
26 | Wang Y, Tang H, Debarry J D, et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 2012, 40(7): e49. |
27 | Bailey T L, Mikael B, Buske F A, et al. Meme suite: Tools for motif discovery and searching. Nucleic Acids Research, 2009, 37(Web server issue): W202-W208. |
28 | Hurst L D. The Ka/Ks ratio: Diagnosing the form of sequence evolution. Trends in Genetics, 2002, 18(9): 486. |
29 | Wang K. Bioinformatic analysis of the CPP transcription factors family in Arabidopsis and rice. Biotechnology Bulletin, 2010(2): 76-84. |
王凯. 拟南芥和水稻CPP转录因子家族的生物信息学分析. 生物技术通报, 2010(2): 76-84. | |
30 | Magali L, Patrice D, Gert T, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002, 30(1): 325-327. |
31 | Benedito V A, Torres-Jerez I, Murray J D, et al. A gene expression atlas of the model legume Medicago truncatula. The Plant Journal, 2008, 55(3): 504-513. |
32 | Meng C M, Ji J H, Li X L, et al. Electronic clone and bioinformatics analysis of CPP transcription factor genes from wheat. Biotechnology, 2014, 24(4): 39-42. |
孟超敏, 姬俊华, 李雪林, 等. 小麦CPP转录因子基因的电子克隆及生物信息学分析. 生物技术, 2014, 24(4): 39-42. | |
33 | Goh C S, Bogan A A, Joachimiak M, et al. Co-evolution of proteins with their interaction partners. Journal of Molecular Biology, 2000, 299(2): 283-293. |
34 | Jain M, Tyagi A K, Khurana J P. Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics, 2006, 88(3): 360-371. |
35 | Zhang M J, Zhu L, Xia Q Z. Research progress on the regulation of plant hormones to stress responses. Journal of Hubei University (Natural Science), 2021, 43(3): 242-253, 263. |
张明菊, 朱莉, 夏启中. 植物激素对胁迫反应调控的研究进展. 湖北大学学报(自然科学版), 2021, 43(3): 242-253, 263. | |
36 | Pan R R, Wei M M, Wang Y J, et al. Cloning and expression analysis of HbCCP1 in rubber tree (Hevea brasiliensis). Plant Physiology Journal, 2018, 54(5): 763-772. |
潘冉冉, 位明明, 王亚杰, 等. 巴西橡胶树HbCPP1基因的克隆与表达分析. 植物生理学报, 2018, 54(5): 763-772. |
[1] | Ya-nan LIU, Ren-jie YU, Yan-li GAO, Jun-mei KANG, Qing-chuan YANG, Zhi-hai WU, Zhen WANG. Expression pattern and biological functions of an annexin encoding gene MtANN2 in Medicago truncatula under salt stress [J]. Acta Prataculturae Sinica, 2022, 31(5): 124-134. |
[2] | Chun-jie LI, Ming-xiao LANG, Zhen-jiang CHEN, Tai-xiang CHEN, Jing LIU, Yuan-yuan JIN, Xue-kai WEI. Effects of Epichloë endophytic fungi on the germination of grass seeds [J]. Acta Prataculturae Sinica, 2022, 31(3): 192-206. |
[3] | Li-juan GAO, Zheng-she ZHANG, Yu WEN, Xi-fang ZONG, Qi YAN, Li-yan LU, Xian-feng YI, Ji-yu ZHANG. Genome-wide identification and expression analysis of the bHLH transcription factor family in Cenchrus purpureus [J]. Acta Prataculturae Sinica, 2022, 31(3): 47-59. |
[4] | Na WEI, Yan-peng LI, Yi-tong MA, Wen-xian LIU. Genome-wide identification of the alfalfa TCP gene family and analysis of gene transcription patterns in alfalfa (Medicago sativa) under drought stress [J]. Acta Prataculturae Sinica, 2022, 31(1): 118-130. |
[5] | Zhi-min YANG, Rui XING, Yun-jia DING, Li-li ZHUANG. Analysis of differentially expressed genes in relation to tiller development and plant height based on transcriptomic sequencing of two tall fescue cultivars [J]. Acta Prataculturae Sinica, 2022, 31(1): 145-163. |
[6] | Jia-ju ZHANG, Jie YU, Ming-na LI, Jun-mei KANG, Qing-chuan YANG, Rui-cai LONG. Identification and functional analysis of lncRNA167 and its cleavage product miR167c in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(1): 164-180. |
[7] | Tong WU, Yun-miao LIU, Jun JIN, Wei-feng DONG, Xiao-xi CAI, Ming-zhe SUN, Bo-wei JIA, Xiao-li SUN. Identification and expression characteristics of a cation/H+ exchanger gene family in Medicago truncatula [J]. Acta Prataculturae Sinica, 2022, 31(1): 181-194. |
[8] | Ru-yue WANG, Wu-wu WEN, En-hua ZHAO, Peng ZHOU, Yuan AN. Cloning and salt-tolerance analysis of MsWRKY11 in alfalfa [J]. Acta Prataculturae Sinica, 2021, 30(11): 157-169. |
[9] | HOU Jie-ru, DUAN Xiao-yue, LI Zhou, PENG Yan. Cloning and expression analysis of TrSAMDC1 in white clover [J]. Acta Prataculturae Sinica, 2020, 29(8): 170-178. |
[10] | LUO Wei, SHU Jian-hong, LIU Xiao-xia, WANG Zi-yuan, MU Qiong, WANG Xiao-li, WU Jia-hai. Cloning, subcellular localization and expression analysis of the RVE8 gene from Festuca arundinacea [J]. Acta Prataculturae Sinica, 2020, 29(7): 60-69. |
[11] | YANG Ting, ZHANG Jian-ping, LIU Zi-gang, QI Yan-ni, LI Wen-juan, XIE Ya-ping. Molecular cloning and expression of heteromeric ACCase subunit genes from flax [J]. Acta Prataculturae Sinica, 2020, 29(4): 111-120. |
[12] | YANG Liu-hui, YIN Hang, HUANG Qin-mei, ZHANG Yan-ni, HE Miao, ZHOU Yun-wei. An analysis of the response of the LpWRKY20 gene to abiotic stress and its role in drought resistance [J]. Acta Prataculturae Sinica, 2020, 29(1): 193-202. |
[13] | XIA Zeng-run, WANG Wen-ying, LIU Ya-qi, WANG Suo-min. Cloning and expression analysis of the K+ channel gene AvAKT1 in Apocynum venetum [J]. Acta Prataculturae Sinica, 2019, 28(8): 180-189. |
[14] | TENG Ke, ZHANG Rui, TAN Peng-hui, YUE Yue-sen, FAN Xi-feng, WU Ju-ying. Molecular cloning, transcriptional activation, subcellular localization analysis and expression characterization of ZjERF1 from Zoysia japonica [J]. Acta Prataculturae Sinica, 2019, 28(6): 56-65. |
[15] | MIN Xue-yang, WEI Xing-yi, LIU Wen-xian, ZHANG Zheng-she, JIN Xiao-yu, NDAYAMBAZA Boniface, WU Hong-lin, LI Yu, WANG Yan-rong. Analysis of genetic differences and construction of an SSR marker fingerprint for Vicia sativa varieties [J]. Acta Prataculturae Sinica, 2019, 28(4): 116-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||